首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical Process Industries usually contain a diverse inventory of hazardous chemicals and complex systems required to perform process operations such as storage, separation, reaction, compression etc. The complex interactions between the equipment make them vulnerable to catastrophic accidents. Risk and failure assessment provide engineers with an intuitive tool for decision making in the operation of such plants. Abnormal events and near-miss situations occur regularly during the operation of a system. Accident Sequence Precursors (ASP) can be used to demonstrate the real-time operating condition of a plant. Dynamic Failure Assessment (DFA) methodology is based on Bayesian statistical methods incorporates ASP data to revise the generic failure probabilities of the systems during its operational lifetime.In this paper, DFA methodology is applied on an ammonia storage unit in a specialized chemical industry. Ammonia is stored in cold storage tanks as liquefied gas at atmospheric pressure. These tanks are susceptible to failures due to various abnormal conditions arising due process failures.Tank failures due to three such abnormal conditions are considered. Variation of the failure probability of the safety systems is demonstrated. The authors use ASP data collected from plant specific sources and safety expert judgement. The failure probabilities of some safety systems concerned show considerable deviation from the generic values. The method helps to locate the components which have undergone more degradation over the period and hence must be paid attention to. In addition, a Bayesian predictive model has been used to predict the number of abnormal events in the next time interval. The user-friendly and intuitive nature of the tool makes it appropriate for application in safety assessment reports in process industries.  相似文献   

2.
为了保证油气集输站场的安全生产和运行,基于标准《Risk-based Inspection Methodology》(API RP 581 2016)和可靠性分析方法GO法,提出1种可完全定量的站场失效可能性评价方法,为站场的全定量风险评价方法提供依据和参考。首先,分析站场内各设备的失效机理,计算其失效概率;然后,根据站场工艺特点,将其划分为若干个子系统,利用GO操作符的定量计算公式,确定各子系统及站场整体的失效可能性值;最后,以某油田联合处理站为实例,采用该方法对其工艺设备、站场子系统及站场整体的失效概率进行计算和分析,确定该站场的失效可能性等级。研究结果表明:通过失效可能性定量评价可使站场风险评价更加量化直观,为站场维护及安全生产运行工作提供更加客观的依据。  相似文献   

3.
通过对机场运行安全规划中安全指标体系定位的分析,遵循可接受、可实施、可量化、可调控的原则,以结果和过程管理思想为指导,结合风险管理理论,构建机场运行安全规划中的安全指标体系。这个体系包括3个子体系,它们分别涉及运行安全的结果、运行安全的业务过程和运行安全管理绩效3个方面。其中,有关运行安全结果的子指标体系包括事故、事故征候、其他不安全事件3个维度11项指标;有关运行安全业务过程的子指标体系包括飞行区管理、机坪运行管理等7个维度20项指标;有关安全管理绩效的子指标体系包括安全政策与目标、风险管理等4个维度7项指标。  相似文献   

4.
The oxygen-enhanced combustor has the advantages of high burning efficiency and low emissions. However, it should not be promoted for industrial use until its reliability and safety have been fully recognized. A new methodology is proposed to assess the risk of an oxygen-enhanced combustor using a structural model based on the FMEA and fuzzy fault tree. In addition, it is applied to a selected pilot semi-industrial combustor. To identify the hazard source comprehensively, the pilot is divided into four subsystems: the combustor subsystem, feed subsystem, ignition subsystem and exhaust subsystem. According to the operational parameters of flow (flow rate, temperature and pressure) and the component functions in different subsystems, the cause and effect matrix can be built using the structural model, and the relationship between the operational parameters and the effects of the change for the operational parameters on the system can be presented. Based on the results of cause and effect matrix, the FMEA can be built to describe the failed models and accident scenarios of the pilot. The main accident forms include leakage, injury, fire and explosion. Accordingly, with the severity and probability analysis of different accident forms, the fire and explosion accidents should be further accessed quantitatively using the fuzzy fault tree analysis. The fault trees can be obtained in accordance with the FMEA, and the qualitative assessments of the basic events can be collected by using expert scoring. A hybrid approach for the fuzzy set theory and weight analysis is investigated to quantify the occurrence probability of basic events. Then, the importance analysis of the fault trees, including the hazard importance of basic events and the cut set importance, is performed to help determine the weak links of the fire and explosion trees. Finally, some of the most effective measures are presented to improve the reliability and safety of the combustion system.  相似文献   

5.
6.
The gas pipeline network is an essential infrastructure for a smart city. It provides a much-needed energy source; however, it poses a significant risk to the community. Effective risk management assists in maintaining the operational safety of the network. The risk management of the network requires reliable dynamic failure probability analysis. This paper proposes a methodology of condition monitoring and dynamic failure probability analysis of urban gas pipeline network. The methodology begins with identifying key design and operational factors responsible for pipeline failure. Subsequently, a causation-based failure model is developed as the Bowtie model. The Bowtie model is transformed into a Bayesian network, which is analyzed using operational data. The key contributory factors of accident causation are monitored. The monitored data is used to analyze the updated failure probability of the network. The gas pipeline network's dynamic failure probability is combined with the potential consequences to assess the risk. The application of the approach is demonstrated in a section of the urban gas pipeline.  相似文献   

7.
Currently, failure-based risk assessments in the process industry do not empirically take into account the type of chemicals processed in equipment, mainly because chemical-specific failure rate data barely exist. This paper suggests a methodology to calibrate failure-based risk assessment predicated on the chemical being processed in equipment. The methodology uses a data mining tool known as the association rule. Specifically, the lift association rule is utilized (the Lift Methodology). By extracting equipment failure information from incident databases based on the chemical involved in the process, the Lift Methodology leads to more accurate equipment-related risk assessment.  相似文献   

8.
9.
Automated controlled systems are vulnerable to faults. Faults can be amplified by the closed loop control systems and they can develop into malfunction of the loop. A control loop failure will easily cause production stop or malfunction at a petrochemical plant. A way to achieve a stable and effective automated system is to enhance equipment dependability. This paper presents a standard methodology for the analysis and improvement of pump performance to enhance total operational effectiveness and stability in offshore industry based on dependability. Furthermore, it is shown how a reliability–safety analysis can be conducted through equipment dependability indicators to facilitate the mitigation of hazard frequency in a plant. The main idea is to employ principle component analysis (PCA) and importance analysis (IA) to provide insight on the pumps performance. The pumps of offshore industries are considered according to OREDA classification. The approach identifies the critical pump and their fault through which the major hazards could initiate in the process. At first PCA is used for assessing the performance of the pumps and ranking them. IA is then performed for the worst pump which could have most impact on the overall system effectiveness to classify their components based on the component criticality measures (CCM). The analysis of the classified components can ferret out the leading causes and common-cause events to pave a way toward improving pump performance through design optimization and online fault detection which ultimately enhance overall operational effectiveness.  相似文献   

10.
Most petrochemical units run under extreme conditions, such as high temperatures, pressures, and speeds. Consequently, the equipment operators may commit errors because the startup and shutdown processes usually involve complicated operation steps; moreover, the operators may lack experience in handling abnormal situations. Misoperation can lead to accidents, including fires and explosions. Thus, risk analysis for process operations and the development of preventive measures have become an effective means of avoiding misoperation-related accidents. However, it is challenging to ensure the comprehensiveness of risk-analysis results. In this paper, we present a method for misoperation monitoring and early warning in the startup and shutdown processes of petrochemical units. The mechanisms of misoperation occurrence are summarized based on investigations of serious accidents in the recent past. Knowledge regarding the mechanisms of misoperation is crucial for the risk analysis of petrochemical units. The potential risk information, such as causes, adverse consequences, key monitoring parameters, and prevention control solutions, should be acquired and be employed to construct an early-warning knowledge database. Furthermore, misoperation judgment rules need to be formulated to identify misoperations. The data obtained from the monitoring module, misoperation judgment rules, and analysis results can aid in developing schemes to avoid possible abnormal situations. This paper reports a misoperation monitoring and early-warning system for a hydrogenation unit. As demonstrated, conducting risk analysis to determine the potential operational risks and formulating misoperation judgment rules to analyze the process data are essential for enabling early warning. The application of this method will contribute to operational guidance, economic loss reduction, and accident avoidance.  相似文献   

11.
Petrochemical plants and refineries consist of hundreds of pieces of complex equipment and machinery that run under rigorous operating conditions and are subjected to deterioration over time due to aging, wear, corrosion, erosion, fatigue and other reasons. These devices operate under extreme operating pressures and temperatures, and any failure may result in huge financial consequences for the operating company. To minimize the risk and to maintain operational reliability and availability, companies adopt various maintenance strategies. Shutdown or turnaround maintenance is one such strategy. In general, shutdown for inspection and maintenance is based on the original equipment manufacturer's (OEM) suggested recommended periods. However, this may not be the most optimum strategy given that operating conditions may vary significantly from company to company.The framework proposed in this work estimates the risk-based shutdown interval for inspection and maintenance. It provides a tool for maintenance planning and decision making by considering the probability of the equipment or system for failure and the likely consequences that may follow. The novel risk-based approach is compared with the conventional fixed interval approach. This former approach, characterized as it is by optimized inspection, maintenance and risk management, leads to extended intervals between shutdowns. The result is the increase in production and the consequent income of millions of dollars.The proposed framework is a cost effective way to minimize the overall financial risk for asset inspection and maintenance while fulfilling safety and availability requirements.  相似文献   

12.
The unexpected failures, the down time associated with such failures, the loss of production and, the higher maintenance costs are major problems in any process plant. Risk-based maintenance (RBM) approach helps in designing an alternative strategy to minimize the risk resulting from breakdowns or failures. Adapting a risk-based maintenance strategy is essential in developing cost-effective maintenance policies.The RBM methodology is comprised of four modules: identification of the scope, risk assessment, risk evaluation, and maintenance planning. Using this methodology, one is able to estimate risk caused by the unexpected failure as a function of the probability and the consequence of failure. Critical equipment can be identified based on the level of risk and a pre-selected acceptable level of risk. Maintenance of equipment is prioritized based on the risk, which helps in reducing the overall risk of the plant.The case study of a power-generating unit in the Holyrood thermal power generation plant is used to illustrate the methodology. Results indicate that the methodology is successful in identifying the critical equipment and in reducing the risk of resulting from the failure of the equipment. Risk reduction is achieved through the adoption of a maintenance plan which not only increases the reliability of the equipment but also reduces the cost of maintenance including the cost of failure.  相似文献   

13.
Quantitative risk assessment (QRA) is a powerful and popular technique to support risk-based decisions. Unfortunately, QRAs are often hampered by significant uncertainty in the frequency of failure estimation for physical assets. This uncertainty is largely due to lack of quality failure data in published sources. The failure data may be limited, incompatible and/or outdated. Consequently, there is a need for robust methods and tools that can incorporate all available information to facilitate reliability analysis of critical assets such as pipelines, pressure vessels, rotating equipment, etc. This paper presents a novel practical approach that can be used to help overcome data scarcity issues in reliability analysis. A Bayesian framework is implemented to cohesively integrate objective data with expert opinion with the aim toward deriving time to failure distributions for physical assets. The Analytic Hierarchy Process is utilized to aggregate time to failure estimates from multiple experts to minimize biases and address inconsistencies in their estimates. These estimates are summarized in the form of informative priors that are implemented in a Bayesian update procedure for the Weibull distribution. The flexibility of the proposed methodology allows for efficiently dealing with data limitations. Application of the proposed approach is illustrated using a case study.  相似文献   

14.
The overall objective of the maintenance process is to increase the profitability of the operation and optimize the total life cycle cost without compromising safety or environmental issues. Risk assessment integrates reliability with safety and environmental issues and therefore can be used as a decision tool for preventive maintenance planning. Maintenance planning based on risk analysis minimizes the probability of system failure and its consequences (related to safety, economic, and environment). It helps management in making correct decisions concerning investment in maintenance or related field. This will, in turn, result in better asset and capital utilization.

This paper presents a new methodology for risk-based maintenance. The proposed methodology is comprehensive and quantitative. It comprises three main modules: risk estimation module, risk evaluation module, and maintenance planning module. Details of the three modules are given. A case study, which exemplifies the use of methodology to a heating, ventilation and air-conditioning (HVAC) system, is also discussed.  相似文献   


15.
针对危险天气下进近管制系统运行风险性大、易发不安全事件的问题,提出根据一段时期内不安全事件的信息来评估该时期进近管制系统运行的风险,从而为以后进近管制系统的安全运行管理提供依据。首先,通过分析危险天气下管制系统运行过程的风险因素,建立风险评估指标体系。其次,给出评估指标灰色关联度属性的计算方法,利用其反映出的信息熵完成指标权重的确定和风险评估模型的建立。最后,应用该模型评估某进近管制中心一段时期内管制运行的风险状态水平,得到了风险值和风险级别,验证了该方法的适用性。  相似文献   

16.
Dynamic risk assessment using failure assessment and Bayesian theory   总被引:1,自引:0,他引:1  
To ensure the safety of a process system, engineers use different methods to identify the potential hazards that may cause severe consequences. One of the most popular methods used is quantitative risk assessment (QRA) which quantifies the risk associated with a particular process activity. One of QRA's major disadvantages is its inability to update risk during the life of a process. As the process operates, abnormal events will result in incidents and near misses. These events are often called accident precursors. A conventional QRA process is unable to use the accident precursor information to revise the risk profile. To overcome this, a methodology has been proposed based on the work of Meel and Seider (2006). Similar to Meel and Seider (2006) work, this methodology uses Bayesian theory to update the likelihood of the event occurrence and also failure probability of the safety system. In this paper the proposed methodology is outlined and its application is demonstrated using a simple case study. First, potential accident scenarios are identified and represented in terms of an event tree, next, using the event tree and available failure data end-state probabilities are estimated. Subsequently, using the available accident precursor data, safety system failure likelihood and event tree end-state probabilities are revised. The methodology has been simulated using deterministic (point value) as well as probabilistic approach. This Methodology is applied to a case study demonstrating a storage tank containing highly hazardous chemicals. The comparison between conventional QRA and the results from dynamic failure assessment approach shows the significant deviation in system failure frequency throughout the life time of the process unit.  相似文献   

17.
The paper presents a new method for identifying contributors to chemical process accidents by exploiting knowledge on causes of past accident cases. Accident reports from the Failure Knowledge Database were analyzed and utilized for hazard identification. The accident information gathered was used as a basis to develop an accidents ranking and points-to-look-for approach for the safe design and operation of chemical process equipment. In the method, accident contributors including technical, design and operation errors of major process equipment types and piping are identified. The method is applicable throughout the process lifecycle, even for process changes in the early design stages. The Bhopal tragedy is used as a case study to demonstrate and test the method. The proposed method can predict on average up to 85% of accident causes and design and operation errors.  相似文献   

18.
Fault propagation analysis is the cornerstone to assure safe operation, optimized maintenance, as well as for the management of abnormal situations in chemical and petrochemical plants. Due to plant complexity and dynamic changes in plant conditions, current approaches have major limitations in identifying all possible fault propagation scenarios. This is due to the lack of realistic equipment and fault models. In this paper, practical framework is proposed to synthesize and assess all possible fault propagation scenarios based on robust modeling methodology. Fault models are constructed where deviations are identified and associated with symptoms, faults, causes, and consequences. Fault models are tuned using real time process data, simulation data, and human experience. The proposed system is developed and applied on case study experimental plant.  相似文献   

19.
This paper proposes a new systemic modeling approach using the unified modeling language (UML) as an operational tool to model a complex industrial system and analyzes its risks. This approach is presented as a modeling process divided into three phases corresponding to functional analysis, structural analysis and risk analysis. This study aims to formalize the interactions within an industrial system and to identify the abnormal situations which could generate risks. The application of this approach is demonstrated with an example of a storage unit of chemical products located in Morocco. This approach provides a comprehensive view that facilitates the understanding of the organization of an industrial system and leads to more effective analysis of its safety.  相似文献   

20.
Achieving a high degree of dependability in complex macro-systems is challenging. Because of the large number of components and numerous independent teams involved, an overview of the global system performance is usually lacking to support both design and operation adequately.A functional failure mode, effects and criticality analysis (FMECA) approach is proposed to address the dependability optimisation of large and complex systems. The basic inductive model FMECA has been enriched to include considerations such as operational procedures, alarm systems, environmental and human factors, as well as operation in degraded mode. Its implementation on a commercial software tool allows an active linking between the functional layers of the system and facilitates data processing and retrieval, which enables to contribute actively to the system optimisation.The proposed methodology has been applied to optimise dependability in a railway signalling system. Signalling systems are typical example of large complex systems made of multiple hierarchical layers. The proposed approach appears appropriate to assess the global risk- and availability-level of the system as well as to identify its vulnerabilities. This enriched-FMECA approach enables to overcome some of the limitations and pitfalls previously reported with classical FMECA approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号