首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fisher’s sex ratio theory predicts that on average parents should allocate resources equally to the production of males and females. However, when the cost/benefit ratio for producing males versus females differs, the theory predicts that parents may bias production, typically through underproduction of the sex with greater variation in fitness. We tested theoretical predictions in the red-necked phalarope, a polyandrous shorebird with sex-role reversal. Since females are larger and therefore potentially more expensive to produce and may have greater variation in reproductive success, we predicted from Fisher’s hypothesis a male bias in population embryonic sex ratio, and from sex allocation theory, female biases in the clutches of females allocating more resources to reproduction. We measured eggs and chicks and sexed 535 offspring from 163 clutches laid over 6 years at two sites in Alaska. The embryonic sex ratio of 51.1 M:48.9 F did not vary from parity. Clutch sex ratio (% male) was positively correlated with clutch mean egg size, opposite to our prediction. Within clutches, however, egg size did not differ by sex. Male phalarope fitness may be more variable than previously thought, and/or differential investment in eggs may affect the within-sex fitness of males more than females. Eggs producing males were less dense than those producing females, possibly indicating they contained more yolk relative to albumen. Albumen contributes to chick structural size, while yolk supports survivorship after hatch. Sex-specific chick growth strategies may affect egg size and allocation patterns by female phalaropes and other birds.  相似文献   

2.
Colony level sex allocation in a polygynous and polydomous ant   总被引:2,自引:0,他引:2  
The colony-level sex allocation pattern of eusocial Hymenoptera has attracted much attention in recent studies of evolutionary biology. We conducted a theoretical and empirical study on this subject using the dolichoderine ant Technomyrmex albipes. This ant is unusual in having a dispersal polymorphism in both males and females. New colonies are founded by an alate female after mating with one or more alate males in the nuptial flight. In mature colonies, the reproductive role of the foundress queen is taken over by wingless offspring (supplementary reproductives). Mature colonies are extremely polygynous, with many wingless queens reproducing through intea-colonial mating with wingless males (inbreeding), and producing both alate and wingless sexuals. The population sex ratio of wingless sexuals was found to be extremely female-biased, while the population allocation ratio of alates was almost 1:1. This result suggests that there is local mate competition among wingless sexuals. A specific model for this extraordinary life cycle predicted that the asymmetry of regression relatedness (b f/b m) will disappear during the first few generations of wingless reproductives after the foundress dies. If colonies begin to produce alates after several wingless generations, this undermines the hypotheses for intercolonial sex ratio variation based on the relatedness asymmetry. We compared the magnitude of variation in sex ratios and other characteristics between two levels (within-colony-inter-nest and between-colony). Although there was considerable within-colony variation in all the examined characteristics, between-colony variances were always larger. This means that allocation is important at the whole-colony level, not that of the nest. There was no apparent correlation between the sex ratio of alates and colony size. Furthermore, partial correlation analysis indicated that neither the number of workers nor investment in alates explained the variation in the sex ratio of alates. The only factor which was significantly correlated with the sex ratio of alates was the sex ratio of wingless sexuals (a positive correlation). We conclude that both the alate and wingless sex ratios may be influenced by a common primary sex ratio at the egg stage, the variance of which may have genetic components. In the wingless sexuals, partial correlation analysis indicated that colony size and the number of workers explained the sex allocation ratio. The number of wingless females was strongly (positively) correlated with the total investment in wingless sexuals, while the number of males showed no such correlation. There is, however, no convincing explanation for the variation in sex allocation ratio of wingless sexuals, because the estimates of investment in wingless males may have a large sampling error. Correspondence to: K. Tsuji  相似文献   

3.
In species without nuptial gifts or parental care, postcopulatory attendance of females by males has generally been interpreted as males guarding against sperm competition. Guarding benefits may be concurrent with attendance (the guarding-now hypothesis), or male behavior during attendance may make the female unreceptive (the guarding in absentia hypothesis). However, in addition to guarding functions, attendance may provide the male with an opportunity to influence the female's use of sperm. In haplodiploids such as hymenopterans, doing so may be beneficial because only daughters and not sons are produced sexually and so influence male reproductive success (the sex ratio hypothesis). In the parasitoid wasp Urolepis rufipes, postcopulatory attendance involved the male remaining mounted after copulation and resuming courtship. Support for the guarding-now hypothesis was limited. A male's presence on a female did not reduce the probability, or quickness, of another male mounting, and second-mounted males frequently copulated. The guarding in absentia hypothesis was not supported. Females became unreceptive soon after mating even when copulation and postcopulatory attendance were experimentally prevented. The sex ratio hypothesis was supported. Postcopulatory attendance caused females to produce more daughters. They also produced more total offspring. Thus, a male should stay and should not go even in the absence of other males, at least when opportunities for other matings are absent as in the present study. Although most studies of offspring sex ratios have focused on maternal control, this study provides an example of apparently adaptive male influence on sex ratio.  相似文献   

4.
When fitness returns or production costs vary between male and female offspring, selection is expected to favor females that adjust offspring sex ratio accordingly. However, to what extent vertebrates can do so is the subject of ongoing debate. Here, we explore primary sex ratios in 125 broods of cooperatively breeding purple-crowned fairy-wrens Malurus coronatus. We expected that females might adjust offspring sex ratio because this passerine species experiences considerable variation in social and environmental conditions. (1) However, although helpers substantially increase parental fitness, females (particularly in pairs and small groups) did not overproduce philopatric males (helper-repayment hypothesis). (2) Sex-ratio adjustment based on competition among individuals (helper-competition hypothesis) did not conceal helper-repayment effects or drive sex allocation on its own: while high-quality territories can accommodate more birds, brood sex ratios were independent of territory quality, alone or in interaction with group size. (3) Additionally, males are larger than females and are possibly more costly to produce (costly sex hypothesis), and (4) female offspring may benefit more from long-term effects of favorable conditions early in life (Trivers–Willard hypothesis). Nonetheless, large seasonal variation in food abundance was not associated with a consistent skew in primary sex ratios. Thus, overall, our results did not support the main hypotheses of adaptive sex-ratio adjustment in M. coronatus. We discuss that long-term differential costs and benefits may be insufficient to drive evolution of primary sex-ratio manipulation by M. coronatus females. More investigation is therefore needed to determine the general required sex differences in long-term fitness returns for mechanisms of primary sex-ratio manipulation to evolve.  相似文献   

5.
Sex allocation theory predicts that if variance in reproductive success differs between the sexes, females who are able to produce high-quality young should bias offspring sex ratio towards the sex with the higher potential reproductive success. We tested the hypothesis that high-quality (i.e., heavy) female eastern kingbirds (Tyrannus tyrannus) that bred early in the breeding season would produce male-biased clutches. A significant opportunity for sexual selection also exists in this socially monogamous but cryptically polygamous species, and we predicted that successful extra-pair (EP) sires would be associated with an excess of male offspring. Although population brood sex ratio did not differ from parity, it increased significantly with female body mass and declined with female breeding date, but was independent of the morphology and display (song) behavior (correlates of reproductive success) of social males and EP sires. Male offspring were significantly heavier than female offspring at fledging. Moreover, the probability that male offspring were resighted in subsequent years declined with breeding date, and was greater in replacement clutches, but lower when clutch size was large. Probability of resighting female offspring varied annually, but was independent of all other variables. Given that variance in reproductive success of male kingbirds is much greater than that of females, and that male offspring are more expensive to produce and have a higher probability of recruitment if fledged early in the season, our results support predictions of sex allocation theory: high-quality (heavy) females breeding when conditions were optimal for male recruitment produced an excess of sons.  相似文献   

6.
Environmental effects on sex allocation are common, yet the evolutionary significance of these effects remains poorly understood. Environmental effects might influence parents, such that their condition directly influences sex allocation by altering the relative benefits of producing sons versus daughters. Alternatively, the environment might influence the offspring themselves, such that the conditions they find themselves in influence their contribution to parental fitness. In both cases, parents might be selected to bias their sex ratio according to the prevailing environmental conditions. Here, we consider sex allocation in the citrus mealybug Planococcus citri, a species with an unusual genetic system in which paternal genes are lost from the germline in males. We test environmental factors that may influence either female condition directly (rearing temperature and food restriction) or that may be used as cues of the future environment (age at mating). Using cytological techniques to obtain primary sex ratios, we show that high temperature, older age at mating and starvation all affect sex allocation, resulting in female-biased sex ratios. However, the effect of temperature is rather weak, and food restriction appears to be strongly associated with reduced longevity and a truncation of the usual schedule of male and offspring production across a female’s reproductive lifetime. Instead, facultative sex allocation seems most convincingly affected by age at mating, supporting previous work that suggests that social interactions experienced by adult P. citri females are used when allocating sex. Our results highlight that, even within one species, different aspects of the environment may have conflicting effects on sex allocation.  相似文献   

7.
The ant Hypoponera opacior exhibits alternative reproductive morphs of males and females associated with distinct sexual behaviours. Our long-term study reports strong seasonality in sexual production with a mating season in early and one in late summer. Winged (alate) reproductives emerge in June, swarm during the monsoon season and establish new colonies independently. In contrast, wingless worker-like (ergatoid) reproductives that appear in late August mate within their natal or adjacent nests and either do not disperse or establish new nests close by. These divergent dispersal patterns allowed us to analyse the impact of local factors on investment strategies by comparing sex allocation between and within the two reproductive events. The optimal sex ratio for ergatoid reproductives should be influenced both by competition for matings between brothers (local mate competition) and rivalry among young locally dispersing queens for workers, nest sites or food (local resource competition). The greater importance of local resource competition was demonstrated both by a male-biased sex ratio for wingless sexuals and a stronger increase in the number of males with total sexual production than for the number of queens. Microsatellite analysis revealed that inter-nest variation in relatedness asymmetry cannot explain split sex ratios in the August generation. Instead, nests with related ergatoid males raised a male-biased sex ratio contrary to the expectations under local mate competition. In conclusion, male bias in wingless H. opacior indicates that local mate competition is less strong than local resource competition among ergatoid queens over the help of workers during nest foundation.  相似文献   

8.
Sex allocation theory predicts that female birds with high-quality mates will benefit from producing more sons, since sons will inherit their father’s superior traits and enjoy a great reproductive success, whereas females with low-quality mates will benefit from producing more daughters, since the variance in reproductive success among daughters is typically lower. The male attractiveness hypothesis may apply to extra-pair paternity (EPP) because socially monogamous females routinely mate with higher quality males outside the pair bond. We test these predictions using the Tibetan ground tit (Pseudopodoces humilis), a sexually monomorphic, socially monogamous, facultatively cooperative breeder. There was greater variation in actual reproductive success among males than females due to EPP. An excess of sons was detected for bi-parental (i.e., non-cooperative) broods wherein EPP was mainly sired by bi-parental males. The pattern was attributed to male-biased sex ratios produced for both EPP and within-pair offspring within the same broods. The reason for the latter case might be a random allocation of more offspring to sons by the potentially EPP-exposed females that have an inability to control fertilization by specific males. In cooperative broods where EPP mostly resulted from within-group helpers of presumed low-quality, as indicated by their failure in acquiring a social mate, there was a non-significant tendency for EPP offspring to be daughters and for within-pair offspring in the same broods to be unbiased. These results support the EPP-related male attractiveness hypothesis especially in terms of the overproduction of sons. Offspring produced through quasi-parasitism was unbiased towards either sex, suggesting a weak female choiceness with respect to the quality of host males.  相似文献   

9.
Recent models of choosiness in mate choice have identified two particularly important factors: the potential reproductive rate (PRR) of the choosing sex relative to that of the chosen sex, and the variation in quality of potential mates. This experimental study tested how these factors affected choosiness in male and female sand gobies, Pomatoschistus minutus. We manipulated relative PRR by means of water temperature, and mate quality by means of body length. The choosing male or female was offered a choice between two mates with either a small or a large difference in body length representing a small or a large variation in mate quality. Choosiness was measured as (1) preference for the larger mate, and (2) as whether or not spawning occurred with the smaller mate, while the larger mate was visible but screened off. We found that females preferred large males, and that their level of choosiness was affected by variation in male quality, but not by their own relative PRR. Males, on the other hand, seemed unselective in all treatments and were in general more likely than females to spawn with their provided partner. This suggests that in the sand goby, variation in male mate quality has a greater influence than relative PRR on facultative changes in female choosiness. However, a general difference in PRR between males and females may be one important factor explaining the observed sex difference in choosiness. Received: 17 April 2000 / Revised: 24 June 2000 / Accepted: 17 July 2000  相似文献   

10.
Sex-allocation theory predicts that females paired to attractive males should bias the brood sex ratio towards male offspring, as these would inherit the attractiveness of their father. We studied sex allocation based on male ornamentation in blue tits. Brood sex ratios varied with male UV coloration in an age-dependent manner. For juvenile males, the proportion of sons increased with increasing UV ornamentation, which is in agreement with previous findings from a Swedish population. However, the relationship between UV ornamentation and brood sex ratio was reversed for adult males, with females paired to less UV-ornamented adult males producing more sons. This pattern fits with the observation that, in our population, less UV-ornamented adult males sire the majority of extra-pair young. To test the causality of the association between brood sex ratio and male coloration, we experimentally manipulated crown colour largely within the natural range. We created two groups of males: one with higher and one with lower UV reflectance, UV(+) and UV(−), respectively. Contrary to our expectations, there was no significant treatment effect. However, in UV(−), but not UV(+) males, the proportion of sons was negatively correlated with male coloration before manipulation. This suggests that the UV(−) treatment caused males that were more UV ornamented to decline more in attractiveness, as shown in a similar experiment in Sweden. However, given that correlational patterns differ between these populations, similarities in experimental results should not be taken as evidence for consistent patterns of adaptive sex allocation in this species.  相似文献   

11.
Facultative sex ratio manipulation in American kestrels   总被引:10,自引:0,他引:10  
Summary For animals that are sexually dimorphic in size, the larger sex is expected to be more costly to raise to independence. Manipulating offspring sex ratios may thus be one means by which parents can fine-tune their reproductive effort to resource availability. Parents in poor physical condition or during poor food years should produce more of the cheaper (smaller) sex. We examined the sex ratios of 259 broods of American kestrels (Falco sparverius) between 1988 and 1990 in relation to food abundance (small mammals) and various attributes to the parents. The proportion of males at hatching increased as the food supply declined, and both male and female parents in poor physical condition were more likely to have male-biased broods than those in good condition. The mortality of eggs and young did not appear to be responsible for the biased sex ratios. The sex ratio was independent of the laying date; however, it was correlated with female body size. Small females produced more sons, perhaps because small size is more detrimental for females than males. Offprint requests to: G.R. Bortolotti  相似文献   

12.
Fisher's theoretical prediction of equal investment in each sex for a panmictic population (The genetical theory of natural selection. Clarendon, Oxford, 1930) can be altered by a number of factors. For example, the sex ratio theory predicts variation in equal investment in each sex when the maternal fitness gains from increased investment differ between sexes. Changing sex allocation because of changing payoffs may result from different ecological situations, such as foraging conditions. We investigated the impact of foraging travel cost on relative investment in sons vs daughters. Field studies were carried out with the central-place-foraging leafcutter bee Megachile rotundata (Fabricius), which has smaller males than females. Therefore, less investment is required to produce a viable son compared with a daughter. We found that with increased flight distance to resources, females produced a greater proportion of sons. Females also invested fewer resources in individual sons and daughters and produced fewer offspring with increased flight distance.  相似文献   

13.
In sexually dimorphic, polygynous species, where males provide little parental care and competition between males for access to fertile females is high, sexual selection theory predicts sex differences in age-specific reproductive output and mortality profiles, and greater variance in lifetime reproductive success in males than in females. We examined age-specific reproductive output, mortality patterns and the extent and causes of variation in reproductive success for a semi-free-ranging colony of mandrills (Mandrillus sphinx, Cercopithecidae) in Franceville, Gabon, using long-term (20 year) demographic records and microsatellite parentage analysis. Although differences in the demography and feeding ecology of this closed, provisioned colony, in comparison with wild mandrills, limit interpretation of our results, sex differences in reproductive output and mortality showed the patterns predicted by sexual selection theory. Mortality was higher in males than in females after sexual maturity, and lifespan was significantly shorter in males (mean 14 year) than in females (>22 year). Age at first reproduction was significantly earlier in females (mean 4.2 year) than in males (11.6 year), and male reproductive output declined earlier. All females of breeding age produced offspring; while only 17 of 53 sexually mature males (32%) sired. Males sired a maximum of 41 offspring, versus 17 in females, and variance in male reproductive output was significantly greater than in females at all ages. The most important influence on variation in lifetime reproductive output in both sexes was joint variation between length of the breeding period and reproductive rate, due to lower reproductive rates in younger animals. Finally, social rank significantly influenced reproductive output in both sexes: high-ranking females began their reproductive careers earlier and had a higher subsequent reproductive rate than low-ranking females, while males that achieved top rank during their career sired far more offspring than males that did not.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
Competition among males to mate is generally associated with male-biased size dimorphism. In this study we examine mating behavior in the northern water snake (Nerodia sipedon), a species in which males are much smaller than females despite substantial competition among males to mate. Competition among males was a consequence of a male-biased operational sex ratio due to slightly higher female mortality from a birth sex ratio of 1 : 1, and, in 1 year, more synchronous and longer mating activity by males. Approximately one-third of both males and females appeared not to mate in a given year. Larger males were generally more likely to attempt mating, but size did not explain the variance in the number of aggregations in which individual males participated. Within aggregations, males that were successful at achieving intromission were larger than unsuccessful males in 1 of 2 years. Variation in condition (mass relative to length) and relative tail length were not generally useful predictors of either mating effort or success in males. Because large size was often advantageous to males, sexual size dimorphism appeared not to be a consequence of sexual selection favoring smaller males. Because sexual dimorphism was evident at birth, and both males and females matured sexually at about 4 years, sexual dimorphism was not simply a consequence of one sex growing at the maximum rate for longer. Female fecundity increased with size, and sex differences in size-fecundity relations may underly the pattern of sexual size dimorphism. However, because multiple mating by females is common, sperm competition is likely to be important in determining male reproductive success. Therefore, allocation of energy to sperm rather than growth may also prove to be an important influence on male growth rates and sexual size dimorphism.  相似文献   

15.
We examine the role of food resources on split sex ratios in Formica exsecta. Models of resource-based sex allocation predict that greater resources will cause an increase in the production of reproductive females (gynes) and an increase in overall size of offspring. We experimentally increased food resources for a subset of colonies in a polygynous population with a very male-biased sex ratio. This increase in food availability caused colonies that were male specialists the prior year to switch to female production. Overall, a significantly greater proportion of food-supplemented colonies produced gynes, compared to control colonies. Moreover, food-supplemented colonies produced significantly larger workers and males (but not gynes), compared to those produced by control colonies. There was, however, no significant difference in the numerical productivity of food-supplemented and control colonies. We also measured the natural association between colony sex specialization and proximity to conifers, which typically harbor honeydew-bearing aphids (an important natural food source). In line with the view that resources play an important role for determining sex ratios in social insects, we found that female-producing colonies were significantly closer to conifers than were male-producing colonies.  相似文献   

16.
The risk of disease transmission can affect female mating rate, and thus sexual conflict. Furthermore, the interests of a sexually transmitted organism may align or diverge with those of either sex, potentially making the disease agent a third participant in the sexual arms race. In Drosophila melanogaster, where sexual conflict over female mating rate is well established, we investigated how a common, non-lethal virus (sigma virus) might affect this conflict. We gave uninfected females the opportunity to copulate twice in no-choice trials: either with two uninfected males, or with one male infected with sigma virus followed by an uninfected male. We assessed whether females respond behaviorally to male infection, determined whether male infection affects either female or male reproductive success, and measured offspring infection rates. Male infection status did not influence time to copulation, or time to re-mating. However, male infection did affect male reproductive success: first males sired a significantly greater proportion of offspring, as well as more total offspring, when they were infected with sigma virus. Thus viral infection may provide males an advantage in sperm competition, or, possibly, females may preferentially use infected sperm. We found no clear costs of infection in terms of offspring survival. Viral reproductive success (the number of infected offspring) was strongly correlated with male reproductive success. Further studies are needed to demonstrate whether virus-induced changes in reproductive success affect male and female lifetime fitness, and whether virus-induced changes are under male, female, or viral control.  相似文献   

17.
The Trivers–Willard model predicts that in polygynous species, superior-quality females will maximize their fitness by producing male offspring. Using a sample of 1,780 Weddell seal (Leptonychotes weddellii) pups recorded over 31 years, we investigated relationships between offspring sex ratio and maternal age, reproductive experience, an index of maternal lifetime reproductive output, and annual environmental variations. We found evidence that females with higher index of lifetime reproductive output were more likely to produce male than female offspring but found only weak evidence that large-scale environmental variations influenced sex ratios. Our results suggest that mothers manipulate offspring sex to maximize their own fitness, and inherent maternal quality may influence offspring sex. These findings support the Trivers–Willard sex-allocation model. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
In a variety of taxa, male reproductive success is positively related to the expression of costly traits such as large body size, ornaments, armaments, and aggression. These traits are thought to improve male competitive ability and, thus, access to limited reproductive resources. Females of many species also express competitive traits. However, we know very little about the consequences of individual variation in competitive traits and the mechanisms that regulate their expression in females. Consequently, it is currently unclear whether females express competitive traits owing to direct selection or as an indirect result of selection on males. Here, we examine females of a mildly dimorphic songbird (Junco hyemalis) to determine whether females show positive covariance in traits (morphology and behavior) that may be important in a competition. We also examine whether trait expression relates either to testosterone (T) in terms of mechanism or to reproductive success in terms of function. We found that larger females were more aggressive and that greater ability to produce T in response to a physiological challenge consisting of a standardized injection of gonadotropin-releasing hormone predicted some measures of female body size and aggression. Finally, we found that aggressive females had greater reproductive success. We conclude that T may influence female phenotype and that females may benefit from expressing a competitive phenotype. We also suggest that the mild dimorphism observed in many species may be due in part to direct selection on females rather than simply a correlated response to selection in males.  相似文献   

19.
Maternal investment in offspring is expected to vary according to offspring sex when the reproductive success of the progeny is a function of differential levels of parental expenditure. We conducted a longitudinal investigation of rhesus macaques to determine whether variation in male progeny production, measured with both DNA fingerprinting and short tandem repeat marker typing, could be traced back to patterns of maternal investment. Males weigh significantly more than females at birth, despite an absence of sex differences in gestation length. Size dimorphism increases during infancy, with maternal rank associated with son’s, but not daughter’s, weight at the end of the period of maternal investment. Son’s, but not daughter’s, weight at 1 year of age is significantly correlated with adult weight, and male, but not female, weight accounts for a portion of the variance in reproductive success. Variance in annual offspring output was three- to fourfold higher in males than in females. We suggest that energetic costs of rearing sons could be buffered by fetal delivery of testosterone to the mother, which is aromatized to estrogen and fosters fat accumulation during gestation. We conclude that maternal investment is only slightly greater in sons than in daughters, with mothers endowing sons with extra resources because son, but not daughter, mass has ramifications for offspring sirehood. However, male reproductive tactics supersede maternal investment patterns as fundamental regulators of male fitness. Received: 23 July 1999 / Received in revised form: 23 February 2000 / Accepted: 13 March 2000  相似文献   

20.
Potential rates of reproduction (PRR) differ between the sexes of many animal species. Adult sex ratios together with PRR are expected to determine the operational sex ratio (OSR) defined as the ratio of fertilizable females to sexually active males at any given time. OSR is expected to determine the degree to which one sex competes for another—the limiting sex. We explored the potential for mate limitation in an intertidal amphipod, Corophium volutator (Pallas). Males have higher PRR than females, but males may be limiting because of extreme female-biased sex ratios observed in this species. Consistent with this idea, late season females were less likely to be ovigerous and had smaller size-specific clutches, both of which were associated with seasonal declines in availability of males of reproductive size. Seasonal changes in ovigery could not be explained by seasonal changes across sites in other factors (e.g., female body size or phenology of breeding). Smaller females were less likely to become ovigerous later in the season at three of four sites. Seasonal reductions in clutch size also occurred among small females expected to be reproducing for their first time. In complimentary laboratory experiments, reduced likelihood of ovigery and reduced fecundity occurred when the number of receptive females was increased relative to availability of a reproductively active male. Our results suggest male mate limitation can occur seasonally in this species and that male limitation is regionally widespread and may affect recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号