首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT: The St. Johns River Water Management District (SJR-WMD) is using a Geographic Information System (GIS) screening model to estimate annual nonpoint source pollution loads to surface waters and determine nonpoint source pollution problem areas within the SJRWMD. The model is a significant improvement over current practice because it is contained entirely within the district's GIS software, resulting in greater flexibility and efficiency, and useful visualization capabilities. Model inputs consist of five spatial data layers, runoff coefficients, mean runoff concentrations, and stormwater treatment efficiencies. The spatial data layers are: existing land use, future land use, soils, rainfall, and hydrologic boundaries. These data layers are processed using the analytical capabilities of a cell-based GIS. Model output consists of seven spatial data layers: runoff, total nitrogen, total phosphorous, suspended solids, biochemical oxygen demand, lead, and zinc. Model output can be examined visually or summarized numerically by drainage basin. Results are reported for only one of the SJRWMD's ten major drainage basins, the lower St. Johns River basin. The model was created to serve a major planning effort at the SJRWMD; results are being actively used to address nonpoint source pollution problems.  相似文献   

2.
ABSTRACT: In the environmental and agricultural conservation planning process, more efficient and effective tools are needed for planners to assist private landowners with making wiser land use decisions. Current methods are slow, inefficient, and costly. Scientific techniques have not been fully implemented within the planning process, yet such plans are increasingly needed to meet water quality and Total Maximum Daily Load (TMDL) requirements. The objectives of this study are to (a) utilize the web for accessing an integrated science‐based land use decision support system; (b) link decision tools, models, and databases to the user via the web; (c) link distributed models and databases for enhanced planning efficiency; and (d) integrate the above into an easily usable and readily accessible system. The procedures resulting in the initial design involved planning expertise and focus groups' input. The system was developed in partnership with the Natural Resources Conservation Service of the U.S. Department of Agriculture and several state agencies. A survey of 150 certified conservation planners, the end users, was conducted to identify the data sets and planning tools needed. Data, tools, and models then were selected and integrated into a web accessible system. Specifically, the first generation used a web interactive Geographic Information System (GIS) that overlaid onto digital orthoquads and/or soils polygons field boundaries, transportation, hydrologic features (such as drains, rivers, lakes, etc.), and high pesticide risk runoff or infiltration areas. Conservation planners found they could save time with the system. Clients could access the system quickly to help them prepare for meeting with their planner. Previously acquiring GIS maps in some cases had been a lengthy process that limited use of the information in land use decisions.  相似文献   

3.
Brown, Juliane B., Lori A. Sprague, and Jean A. Dupree, 2011. Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the Effects of Irrigation and Reservoirs. Journal of the American Water Resources Association (JAWRA) 47(5):1034‐1060. DOI: 10.1111/j.1752‐1688.2011.00584.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.  相似文献   

4.
ABSTRACT: Public awareness of the importance of protecting the nation's water supplies is growing. Recent studies have shown a substantial increase in the perceived value of protecting water supplies for future use. In the Northeast, much of the water supply comes from ground water. This paper examines three test cases, each with different approaches for using geographic information systems (GIS) for ground water protection planning. In Wellfleet, Massachusetts, build-out scenarios were used to support regulatory and land acquisition decisions for siting a public water supply well. In Hadley, Massachusetts, the focus was on a decision support model for septic suitability assessment in support of regulatory efforts and infrastructure expansion. For Cortland County, New York, an interactive graphic user interface was created to facilitate the manipulation and recombination of a large volume of data by county officials to target ground water pollution prevention efforts. As personal computers become more powerful and inexpensive, and GIS data become more readily available, community and county governments are turning to GIS as a tool for developing comprehensive resource protection plans. Once appropriate data are input, a GIS can effectively and efficiently be used to derive outcomes of various land use plans and regulations.  相似文献   

5.
ABSTRACT: Watershed management decision making is a complex process. Cooperation and communication among federal, state, and local stakeholders is required while balancing biophysical and socioeconomic concerns. The public is taking part in environmental decisions, and the need for technology transfer from public agencies to stakeholders is increasing. Information technology has had a profound influence on watershed management over the past decade. Advances in data acquisition through remote sensing, data utilization through geographic information systems (GIS), and data sharing through the Internet have provided watershed managers access to more information for management decisions. In the future, applications incorporating hydrologic simulation models, GIS, and decision support systems will be deployed through the Internet. In addition to challenges in making complex modeling technology available to diverse audiences, new information technology issues, such as interoperability, Internet access, and security, are introduced when GIS, simulation models, and decision support systems are integrated in an Internet environment. This paper presents a review of current use of information technology in watershed management decision making and a discussion of issues created when developing Internet based, integrated watershed management decision support systems. A prototype spatial decision support system (SDSS) for rangeland watershed management was developed using web services, which are components that communicate using text based messages, thus eliminating proprietary protocols. This new framework provides an extensible, accessible, and interoperable approach for SDSS.  相似文献   

6.
A resource survey and planning method for parks, reserves, and other environmentally significant areas (ESAs) is presented in the context of a holistic balanced approach to land use and environmental management. This method provides a framework for the acquisition, analysis, presentation, and application of diverse ecological data pertinent to land use planning and resource management within ESAs. Through the independent analysis and subsequent integration of abiotic, biotic, and cultural or ABC information, land areas within an ESA are identified in terms of their relative environmental significance and environmental constraints. The former term encompasses wildlife, historic, and other resource values, while the latter term reflects biophysical hazards and sensitivities, and land use conflicts. The method thus calls for a matching of an ESA's distinctive attributes with appropriate land use and institutional arrancements through an analysis of available acts, regulations, agencies, and other conservation and land use management mechanisms. The method culminates with a management proposal showing proposed park or reserve allocations, buffer areas, or other land use controls aimed at preserving an ESA's special ecological qualities, while providing for resource development. The authors suggest that all resource management decisions affecting ESA's should be governed by a philosophical stance that recognizes a spectrum of broad land use types, ranging from preservation to extractive use and rehabilitation.  相似文献   

7.
8.
A thorough understanding of past and present hydrologic responses to changes in precipitation patterns is crucial for predicting future conditions. The main objectives of this study were to determine temporal changes in rainfall‐runoff relationship and to identify significant trends and abrupt shifts in rainfall and runoff time series. Ninety‐year rainfall and runoff time series datasets from the Gasconade and Meramec watersheds in east‐central Missouri were used to develop data screening procedure to assess changes in the rainfall and runoff temporal patterns. A statistically significant change in mean and variance was detected in 1980 in the rainfall and runoff time series within both watersheds. In addition, both the rainfall and runoff time series indicated the presence of nonstationary attributes such as statistically significant monotonic trends and/or change in mean and variance, which should be taken into consideration when using the time series to predict future scenarios. The annual peak runoff and the annual low flow in the Meramec watershed showed significant temporal changes compared to that in the Gasconade watershed. Water loss in both watersheds was found to be significantly increasing which is potentially due to the increase in groundwater pumping for water supply purposes.  相似文献   

9.
ABSTRACT: The construction of three Missouri River main stem dams, Garrison, Oahe and Fort Randall, and the related reservoir taking caused social and economic changes on five Indian reservations, Fort Berthold, Cheyenne River, Standing Rock, Crow Creek and Lower Brute. The inundation of Missouri River riparian lands caused the loss of important cultural, social and economic environments. Ninety percent of the reservations timber, seventy-five percent of its wildlife and most of the fertile cropland were in the reservoir taking area. Urban and more fertile environments downstream and to the east received most of the projects benefits. The Indian minority on the five reservations received few economic and social benefits after bearing a disporportionate share of the social and economic costs of the developments. Relocation was forced upon those who had the longest historic and cultural claim to the land. The social costs to the American Indian occasioned by the Missouri River water developments illustrates two broad areas seldom considered during the decision process. First, the unique historic, cultural or religious values of minorities affected by developments. Second, the disproportionate spacial allocation of both benefits and costs. The second item includes social, economic and cultural considerations in not just a geographic framework but a cultural framework as well.  相似文献   

10.
Multi-tenure reserve networks aim to connect areas managed for biodiversity conservation across public and private land and address the impacts of fragmentation on both biotic and social systems. The operation and function of Australian multi-tenure reserve networks as perceived by their land managers was investigated. Overall, the conservation of natural assets was the most frequently reported primary reason for involvement in a network. The perceived aims of the respective networks largely reflected the response identified for involvement and management. Over 88% of managers considered their involvement in multi-tenure reserve networks to be a positive or very positive experience. A lack of resources and time for management were considered major limitations of these networks. The majority (80%) of private land managers within networks were willing to be included in a national reserve system of conservation lands. As the Australian National Reserve System currently incorporates mostly public land, these findings have important and potentially positive implications for a greater role for protected private land.  相似文献   

11.
ABSTRACT: Significant land cover changes have occurred in the watersheds that contribute runoff to the upper San Pedro River in Sonora, Mexico, and southeast Arizona. These changes, observed using a series of remotely sensed images taken in the 1970s, 1980s, and 1990s, have been implicated in the alteration of the basin hydrologic response. The Cannonsville subwatershed, located in the Catskill/Delaware watershed complex that delivers water to New York City, provides a contrast in land cover change. In this region, the Cannonsville watershed condition has improved over a comparable time period. A landscape assessment tool using a geographic information system (GIS) has been developed that automates the parameterization of the Soil and Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS) hydrologic models. The Automated Geospatial Watershed Assessment (AGWA) tool was used to prepare parameter input files for the Upper San Pedro Basin, a subwatershed within the San Pedro undergoing significant changes, and the Cannonsville watershed using historical land cover data. Runoff and sediment yield were simulated using these models. In the Cannonsville watershed, land cover change had a beneficial impact on modeled watershed response due to the transition from agriculture to forest land cover. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response.  相似文献   

12.
ABSTRACT: In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within ± 11 percent of actual, within ± 14 percent for seven-day forecasts, and within ± 26 percent for 14-day forecasts for the 16- month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to ± 9 percent for the model and ± 11 percent and ± 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.  相似文献   

13.
ABSTRACT: A present concern in decision making processes for forest land use is the environmental effects of land use activities on water, air, and the land itself. Criteria for evaluating the magnitude and detriment of environmental impacts are not definite since it is often difficult to isolate a particular activity as the cause of a particular impact. Instead, interactions between various forest practices must be considered along with their integrated impacts. In order to provide an effective decision tool, the College of Forest Resources, University of Washington, is modeling the forest ecosystem of the Snohomish River Basin located in the Cascade Mountains of western Washington. The project consists of a general system model comprised of subsystem models dealing with product conversion processes, forest production processes, recreation supply processes, wildlife and fisheries supply processes, and the interactions of these processes with water and the atmosphere. The system model is interfaced with a computerized multiple player management game which enables land managers, manufacturing managers, and regulation agency personnel to make management decisions and respond to indications of lack of environmental control. Responses of the hydrologic system to various management decisions are simulated by the water subsystem model. The responses being considered include surface flow quantity and water quality. The model emphasizes the monitoring of non-point as well as point source impacts rather than predicting short-term hydrographs. The significance of impacts vary with land use patterns and the goals of the game player. Therefore, the model has flexible resolution and is able to predict hydrologic conditions for both large and small scale. The water subsystem model responds to management decisions by interpreting the effects of management options selected by game players for 40-acre cells within the Basin. The model then determines which streams are immediately affected, defines the watersheds contributing to these streams, and extracts from a resource data bank the information needed to define model parameters. Using these parameters and precipitation inputs, mean flow discharge on a montly and annual basis is calculated for the impactcd sub watersheds as well as 21 major watersheds of the Basin. Water quality responses predicted for these watersheds include suspended sediment concentration, temperature increases due to stream exposure, dissolved oxygen concentrations, the effects of fertilization on nitrogen content, biocide and herbicide effects, and residues from product conversion processes.  相似文献   

14.
Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063?Mg?year(-1) with an average soil loss of 11.2?Mg?year(-1). The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41?years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010?Mg?year(-1) and was estimated to be 1,640,947?Mg?year(-1) for the same two sub-basins. The measured sediment yield of the gauge station is 127.6?Mg?km(-2)?year(-1) but was estimated to be 170.2?Mg?km(-2) year(-1). The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.  相似文献   

15.
ABSTRACT. The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicate that ERTS-I is extremely useful as a regional tool for flood management. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. The flood prone areas delineated on these maps correspond to areas that would be inundated by significant flooding (approximately the 100 year flood). The flood prone area boundaries were generally in agreement with flood hazard maps produced by the U. S. Army Corps of Engineers and U. S. Geological Survey although the latter are somewhat more detailed because of their larger scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.  相似文献   

16.
ABSTRACT: Techniques were developed using vector and raster data in a geographic information system (GIS) to define the spatial variability of watershed characteristics in the north-central Sierra Nevada of California and Nevada and to assist in computing model input parameters. The U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter watershed model, simulates runoff for a basin by partitioning a watershed into areas that each have a homogeneous hydrologic response to precipitation or snowmelt. These land units, known as hydrologic-response units (HRU's), are characterized according to physical properties, such as altitude, slope, aspect, land cover, soils, and geology, and climate patterns. Digital data were used to develop a GIS data base and HRIJ classification for the American River and Carson River basins. The following criteria are used in delineating HRU's: (1) Data layers are hydrologically significant and have a resolution appropriate to the watershed's natural spatial variability, (2) the technique for delineating HRU's accommodates different classification criteria and is reproducible, and (3) HRU's are not limited by hydrographic-subbasin boundaries. HRU's so defined are spatially noncontiguous. The result is an objective, efficient methodology for characterizing a watershed and for delineating HRU's. Also, digital data can be analyzed and transformed to assist in defining parameters and in calibrating the model.  相似文献   

17.
ABSTRACT: The Export Coefficient model (ECM) is capable of generating reasonable estimates of annual phosphorous loading simply from a watershed's land cover data and export coefficient values (ECVs). In its current form, the ECM assumes that ECVs are homogeneous within each land cover type, yet basic nutrient runoff and hydrological theory suggests that runoff rates have spatial patterns controlled by loading and filtering along the flow paths from the upslope contributing area and downslope dispersal area. Using a geographic information system (GIS) raster, or pixel, modeling format, these contributing area and dispersal area (CADA) controls were derived from the perspective of each individual watershed pixel to weight the otherwise homogeneous ECVs for phosphorous. Although the CADA‐ECM predicts export coefficient spatial variation for a single land use type, the lumped basin load is unaffected by weighting. After CADA weighting, a map of the new ECVs addressed the three fundamental criteria for targeting critical pollutant loading areas: (1) the presence of the pollutant, (2) the likelihood for runoff to carry the pollutant offsite, and (3) the likelihood that buffers will trap nutrients prior to their runoff into the receiving water body. These spatially distributed maps of the most important pollutant management areas were used within New York's West Branch Delaware River watershed to demonstrate how the CADA‐ECM could be applied in targeting phosphorous critical loading areas.  相似文献   

18.
ABSTRACT: This paper addresses the recent interest in management of the Missouri River. Interstate issues in the river basin include interbasin water diversions, riverbed and shoreline degradation, loss of recreational and natural areas, reduction in navigation capacity, the status of the Pick-Sloan Missouri Basin Program in terms of general river development, and the elimination of river basin commissions, An attempt to develop a comprehensive interstate water compact failed in the 1950s. The new efforts towards establishing a compact are discussed, as well as other available mechanisms for resolution of the current political and legal differences among the ten river basin states.  相似文献   

19.
To achieve the overall objective of restoring natural environment and sustainable resource usability, each forest management practice effect needs to be predicted using a simulation model. Previous simulation efforts were typically confined to public land. Comprehensive forest management practices entail incorporating interactions between public and private land. To make inclusion of private land into management planning feasible at the regional scale, this study uses a new method of combining Forest Inventory and Analysis (FIA) data with remotely sensed forest group data to retrieve detailed species composition and age information for the Missouri Ozark Highlands. Remote sensed forest group and land form data inferred from topography were integrated to produce distinct combinations (ecotypes). Forest types and size classes were assigned to ecotypes based on their proportions in the FIA data. Then tree species and tree age determined from FIA subplots stratified by forest type and size class were assigned to pixels for the entire study area. The resulting species composition map can improve simulation model performance in that it has spatially explicit and continuous information of dominant and associated species, and tree ages that are unavailable from either satellite imagery or forest inventory data. In addition, the resulting species map revealed that public land and private land in Ozark Highlands differ in species composition and stand size. Shortleaf pine is a co-dominant species in public land, whereas it becomes a minor species in private land. Public forest is older than private forest. Both public and private forests have deviated from historical forest condition in terms of species composition. Based on possible reasons causing the deviation discussed in this study, corresponding management avenues that can assist in restoring natural environment were recommended.  相似文献   

20.
Appropriate land management decisions are important for current and future use of the land to ensure its sustainability. This requires that land management units (LMUs) be specified to enable the identification of specific parameters employed in decision making processes. This paper presents the development of a conceptual model, within geographic information systems (GIS), for defining and assessing LMUs from available biophysical information. The model consists of two main components (sub-models): land quality-based suitability analysis and soil erosion estimation. Using a fuzzy set methodology, the first sub-model was constructed to derive a land suitability index (LSI) for a cropping land utilization type. The LSI thus highlights the suitability grades of every pixel in the study area on a continuous basis. A sub-model of soil erosion was established based on the Revised Universal Soil Loss Equation (RUSLE) utilising the same spatial data bases employed for structuring the LSI. Using a soil loss tolerance principle, a fuzzy membership function of average annual soil loss (called soil loss index, SLI) was established, leading to compatibility between LSI and SLI for data integration. LMUs were then derived from various combinations of LSI and SLI. The methodology developed shows the significance of the model for refining available land suitability evaluation systems, which take no account of expected land degradation (from erosion) due to a nominated land use. It also provides a valuable guideline for cost-effective GIS applications in the identification and assessment of homogeneous land units, using available spatial information sets, at a finer scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号