首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了研究低品质煤炭堆积状态下内部自热理论,采用临界自燃着火点理论和Frank-Kamenetskii模型研究了煤堆内部热产生与热散失平衡理论以及煤堆表面的换热现象;并应用设计研发的煤堆热扩散率及温度监测实验装置和测定方法来评估低品质煤样(褐煤以及亚烟煤)临界自燃温度。结果表明:煤样堆积状态下临界自燃着火点温度可通过实验室内测定分析不同体积网框在不同环境温度条件下自热曲线得出;同体积条件下,临界自燃着火点随着煤品质的升高而增加;在140℃环境条件下,1#,2#和3#煤样在快速升温的前20 min内,温度变化趋势相似;在60~65℃,3种煤样出现温度转折点,升温速率开始减缓;根据煤样临界自燃着火点温度结合F-K热发火边界条件理论得出的堆积体积与着火点耦合关系式可预测大体积煤样自燃倾向性及临界自燃温度。  相似文献   

2.
为了研究低品质煤炭堆积状态下内部自热理论,采用临界自燃着火点理论和Frank-Kamenetskii 模型研究了煤堆内部热产生与热散失平衡理论以及煤堆表面的换热现象;并应用设计研发的煤堆热扩散率及温度监测实验装置和测定方法来评估低品质煤样(褐煤以及亚烟煤)临界自燃温度。结果表明:煤样堆积状态下临界自燃着火点温度可通过实验室内测定分析不同体积网框在不同环境温度条件下自热曲线得出;同体积条件下,临界自燃着火点随着煤品质的升高而增加;在140 ℃ 环境条件下,1#,2# 和3# 煤样在快速升温的前20 min内,温度变化趋势相似;在60~65 ℃,3种煤样出现温度转折点,升温速率开始减缓;根据煤样临界自燃着火点温度结合F-K热发火边界条件理论得出的堆积体积与着火点耦合关系式可预测大体积煤样自燃倾向性及临界自燃温度。  相似文献   

3.
为研究褐煤在堆积状态下的自然发火特性,开展实验室试验,基于Frank-Kamenetskii理论,采用开放式恒温加热方法,将6种不同粒径的褐煤煤样分别放入5、10和15 cm等尺寸的立方体网篮,组成18个自然堆积状态的煤堆,并置于不同的恒温条件下,研究煤堆的升温过程,探讨粒径对煤氧化过程中自燃阶段临界温度的影响。结果表明:煤堆的升温过程可分为初始升温、缓慢升温、快速升温和自燃(或温度回落)4个阶段;在煤堆体积相同时,煤样粒径的减小会使自燃阶段临界温度降低,随着煤堆体积的增大,粒径影响逐渐减弱直至可被忽略。  相似文献   

4.
为预测大体积低品质煤炭自然发火温度,采用恒温加热系统和气体检测分析系统,研究煤堆的自热特性。根据Frank-Kamenetskii边界条件理论,并结合自然对流和临界自燃着火点研究方法,分析煤堆内部的温度变化、水分蒸发及能量转变情况,进而探讨环境温度、氧化气体和煤自燃倾向性的关系。结果表明:煤样水分含量是导致其自热升温曲线出现下降阶段的重要因素,煤堆内部不同位置其温度下降阶段持续的时间不同;自热反应所产生气体浓度随煤温的升高而增高;未燃状态下,氧化作用最强阶段位于温度上升初始段后期;自然对流和低温氧化导致煤堆体积缩减,环境温度越高体积缩减程度越大;煤样临界自燃着火点研究方法可有效应用于大体积煤堆自燃着火点预测。  相似文献   

5.
为了了解露天含水煤堆自燃过程中温度变化特性,利用模拟和实验手段研究了煤堆内部温度的动静态分布情况,结果表明:含水煤堆升温过程经历了升温—缓慢升温—快速升温三个阶段,水分的存在使煤堆在自燃中期升温速率放缓,水分含量越高,水分蒸发所需时间越长,煤堆安全保存期越长,水分蒸发完毕后煤堆进入快速升温阶段,温度模拟结果与煤堆升温实验数据在趋势上比较符合,降雨和注水作业都会对煤堆升温过程产生较大的影响,对高温煤堆进行大量注水,只会起到临时的灭火效果,本质上是促进自燃明火发生,适当的循环注水可以起到较长的冷却效果。  相似文献   

6.
为了研究露天煤堆堆放时内部水分含量的动态变化特征,建立了含水煤堆自燃升温模型,利用数值模拟研究了煤堆在堆放30d内温度和水分含量的变化过程,结果表明:煤堆自迎风面开始向背风面依次形成散热带、升温带和窒息带,含水煤堆自燃温度上升过程依次分为Ⅰ升温,Ⅱ缓慢升温,Ⅲ快速升温。而煤堆内水分含量的变化也依次分为Ⅰ缓慢蒸发,Ⅱ快速蒸发和Ⅲ蒸干三个阶段。依据结论对煤堆内部水分含量的动态过程展开进一步研究,有助于将湿润煤体自燃特征规律的实验成果应用于现场实践。  相似文献   

7.
为研究不同煤质煤尘的着火性能,首先,选取不同矿区9种煤样,分析其水分、挥发分、灰分、固定碳煤等工业成分;然后开展煤尘云最低着火温度试验;最后,对工业分析指标和煤尘云最低着火温度进行统计学和灰色关联分析。结果表明:煤样的最低着火温度介于405~515℃,着火温度值差异较大;煤的工业分析指标均与最低着火温度呈现出较强相关性:挥发分和固定碳含量与最低着火温度负相关,灰分和水分含量与最低着火温度呈正相关,即挥发分含量、固定碳含量越高,煤尘越易出现着火现象,灰分含量、水分含量越高,煤尘越不易着火;挥发分含量与最低着火温度关联度最大。  相似文献   

8.
为探究氧气浓度与升温速率对煤自燃特性的影响,利用TG/DSC-FTIR联用热分析技术测试3种不同变质程度的煤样在不同氧体积分数和不同升温速率下的放热特性,分析3种煤样在氧化过程中特征温度、热效应及标志性气体产生量等参数的变化规律。结果表明:氧体积分数一定时,升温速率越小,放热峰值、特征温度和指标气体释放峰值越向低温区偏移。在相同升温速率下,随着氧气体积分数的减小,煤氧化放热峰值温度降低;煤自燃指标气体峰值对应的温度逐渐向高温区域移动。煤变质程度增高,煤自燃特征温度呈增大趋势;放热量的峰值降低,对应的峰值温度增大;指标气体释放峰值温度增大,自燃危险性呈降低趋势。  相似文献   

9.
低温条件下,煤氧复合作用所产生的热量会使煤体温度升高,甚至发生自燃。为确定煤的氧化性特征,对煤样进行加热升温试验,在程序控制炉中采用相同的线性升温条件(以2℃/h的速率从20℃升至125℃)进行试验,研究通入空气、煤氧化变质程度及不同煤样的影响。采用温差分析方法对煤样升温数据进行处理,分析煤样的低温氧化特点和规律。结果表明,在升温过程中,升温速率曲线呈现增大、减小、再次增加的规律。通入空气煤样的升温速率曲线要高于不通空气的升温速率曲线,新鲜煤样的升温速率曲线要高于氧化变质煤样的升温速率曲线,易自燃煤样的升温速率曲线要高于难自燃煤样的升温速率曲线。理论分析表明,升温速率曲线数值大小反映了氧化放热率的强弱。升温速率曲线间的差值越大,则氧化放热率相差越大。因此,在相同的控制升温条件下,不同煤样的升温速率曲线数值大小可有效地反映自燃性的相对强弱。  相似文献   

10.
干燥条件下高硫煤低温氧化特性研究   总被引:1,自引:0,他引:1  
为进一步揭示不同环境条件下高硫煤的低温氧化特性,选取含硫量较低、自燃倾向性较高的褐煤,向其添加不同比例的FeS2,配制成含量分别为3%,5%,7%的混合高硫煤样,利用中国矿业大学自行研制的煤氧化模拟试验系统,测试分析干燥混合煤样在低温氧化过程中,交叉温度和指标气体CO产生量体积的变化。试验结果表明,在低温干燥的条件下,随着FeS2含量的增加,煤样的氧化特性受到抑制:交叉点温度升高;指标气体CO产生量在相同温度时体积降低。因此,在高硫煤层自燃火灾防治过程中,应尽量控制煤层周围环境的干燥度。  相似文献   

11.
为研究不同自燃倾向性煤的自燃指标气体变化规律,提高对煤早期自燃预测预报的准确度,采用程序升温实验系统,得到内蒙古褐煤、神东长焰煤、河南气煤及枣庄焦煤4种不同变质程度煤的氧化时间随温度的变化关系,以及指标气体浓度在煤氧化过程中的变化规律。结果表明:自燃倾向性最高的褐煤应以CO和乙烯作为煤自燃早期预报的首选指标气体;易自燃的长焰煤应采用乙烯和烯烷比为主、以CO为辅的煤自燃判定指标;自燃倾向性较低的气煤应以乙烯和烯烷比作为煤自燃预报指标;CO是自燃倾向性最低的焦煤的最佳自燃预报指标气体。  相似文献   

12.
实验测定了林西矿肥煤样品30~900℃煤自燃全过程热动力学特征参数,得出:TG/DTG曲线显示煤样DTG初始临界温度45℃,干裂温度122℃,活性温度195℃,增速温度265℃,质量极大值温度342℃,着火温度465℃,最大热失重速率温度515℃和燃尽温度690℃;DSC曲线显示,煤样初始放热温度60℃、最大热释放速率温度511℃。结合TG-DTG-DSC曲线综合分析可知,煤温达到510℃左右时煤样反应最剧烈。由煤自燃标志气体测定实验系统得出:煤温130℃后CO,CO 2释放量迅速增加,210℃增加速度下降;CH 4,C 2 H 6含量变化具有规律性且两者变化相近;C 2 H 4出现温度为130℃;C 2 H 4/C 2 H 6比值在190~350℃有较强的规律性,呈上升趋势且上升速度较快;350℃之后,CH 4,C 2 H 6,C 2 H 4体积分数均开始急剧增大;C 2 H 4/CO与C 2 H 4/CO 2变化趋势大致相同,在130~350℃时缓慢增长,达到350℃后比值呈指数形式上升。经拟合曲线,得到活化能的3个突变点温度:70,180,220℃,其中180℃与交叉点温度相吻合。通过以上研究,得到了肥煤自燃全过程的热力学特征参数,为实际生产中防治煤自燃提供了理论依据。  相似文献   

13.
为探究易自燃煤在常温条件下的氧化特性,自行设计煤常温封闭氧化实验装置,采用实验研究与回归分析2种方法,分析易自燃煤发生氧化反应的气体变化过程,探究3种粒径煤样在20 ℃有限空间内的耗氧与产气特征。结果表明:易自燃煤样在16 d常温封闭氧化过程中,容器内O2体积浓度呈指数衰减、CO和CO2体积浓度呈指数增长的变化规律;在0.06~0.83 mm范围内,粒径越大,易自燃煤耗氧速率越大,CO和CO2产生速率则先增大后减小;介于中间的粒径为0.13~0.25 mm易自燃煤氧化反应最强烈,更容易发生氧化。研究结果对揭示生产环境温度下煤粒粒径对煤自燃的影响有一定的意义。  相似文献   

14.
为准确判断煤燃点,提高煤自燃灾害防治能力,依据热爆炸理论,结合煤自燃过程放热曲线,将煤自燃升温过程中微分热流曲线上第1处极小值点作为煤的燃点,计算煤着火前后放热过程动力学参数变化.结果表明:随升温速率增加,煤自燃反应放热过程逐渐向高温区域移动,煤燃点逐渐增大,反应的活化能逐渐减小;同一升温速率下燃点之后煤的活化能增大;...  相似文献   

15.
为研究不同供风量对褐煤自燃特性的影响规律,选取平庄瑞安煤矿褐煤作为试验煤样,利用程序升温试验和气相色谱仪,研究低温氧化阶段不同供风量条件下褐煤自燃极限参数与温度、供风量之间的变化规律。结果表明:温度在40~120℃时,随着供风量增大,褐煤的最小浮煤厚度和下限氧浓度降低,上限漏风强度增加;温度在120~200℃,供风量为40~80 mL/min和160~200 mL/min时,随着供风量的增加,其最小浮煤厚度和下限氧浓度增加,上限漏风强度减少;供风量为80~160 mL/min时,在供风量增大的情况下,褐煤的最小浮煤厚度和下限氧浓度降低,上限漏风强度增加;随着供风量减小,煤样临界点温度降低。  相似文献   

16.
煤炭自燃指标性气体确定的实验研究   总被引:3,自引:0,他引:3  
矿井火灾是矿井五大灾害之一,煤炭自燃则是矿井火灾最主要的起因。为了了解煤炭氧化、自燃规律,本文采用TG-DSC技术研究了不同煤种在水分蒸发、吸氧增重、受热分解及燃烧等不同氧化阶段的氧化特征值;并采用TG-DSC-GC联用技术研究了不同煤种在整个氧化阶段的气体产物生成规律及其特征。在煤的低温氧化阶段,找出了CO等可作为判别煤自燃的指标性气体及C2H4等辅助指标性气体;并得出了各煤种氧化阶段的耗氧规律。  相似文献   

17.
煤炭开采面临煤自然发火等灾害的严重威胁,在分析现有防灭火技术特征的基础上,制备了1种水泥基泡沫材料。探讨了水泥基泡沫形成机理,包括水基泡沫与浆液扰流混合发泡,表面活性剂增加颗粒疏水性及颗粒稳定泡沫液膜,液膜中水泥、粉煤灰颗粒水化反应及促凝剂加速凝结固化。搭建了小型抑制煤堆自燃试验平台,开展了煤堆自燃温升变化及黄泥浆、无机凝胶、阻化泡沫、水泥基泡沫等防灭火介质降温效果试验,结果表明:水泥基泡沫具有向上堆积的能力,能对高温煤颗粒进行覆盖、包裹,并具有较好的热稳定性,总体降温性能最佳;压注后,监测时间0~900 s内,径向距离为0.1,0.2,0.3,0.4,0.5 m处温度分别从376.98,376.00,374.38,372.14,369.27 ℃下降到21,26,29,35,42 ℃。  相似文献   

18.
为分析煤自燃早期气体指标变化特征规律,更好地解决煤矿现场灭火救灾决策问题,通过煤自燃程序升温试验,首先得到煤样气氛中O2,CO,CO2,CH4,C2H4和C2H6气体的体积分数随温度的变化规律。根据煤体温度,将煤自燃前期划分为5个阶段(潜伏、储热、蒸发、活跃和乏氧)。分析3种不同变质程度的煤样的气体指标在各阶段的变化特征。建立煤自燃气体指标与特征温度阶段区间的对应关系。结果表明:在自燃潜伏阶段,煤的变质程度越低,早期越易产生CO,越难产生CH4;在储热阶段,煤的变质程度越低,早期越易且越快产生C2H6;在蒸发阶段,煤内外在水分脱附,低变质煤的C2H4也随之产生;在活跃阶段,各种气体体积分数均有剧烈增高的趋势,较高变质煤的C2H4也随之产生;在乏氧阶段,O2体积分数低于15%,与O2体积分数相关指标(CO/ΔO2,CO/CO2等)趋势有所改变。  相似文献   

19.
为了深入探究矿井下伴生硫化物对煤自燃及着火燃烧特性的影响,向原煤中添加不同量的含硫物配制4种不同含硫量的煤样,通过TG实验、DSC测试和XRD分析,研究伴生硫化物对煤自燃及着火燃烧特性的影响规律;基于Coats-Redfern法计算煤中掺加不同伴生硫化物时煤燃烧阶段的活化能。研究结果表明:随着煤中掺比伴生硫化物的增多,煤的特征温度相应减小,而吸氧量、可燃和稳燃指数相应增大,原煤中混入伴生硫化物后更易自燃;随着煤中掺比伴生硫化物的增多,煤燃烧阶段的活化能降低,煤更易着火燃烧;伴生硫化物的主要成分为水绿矾、叶绿矾,这些物质在常温下遇水和氧气能够发生化学循环反应,反应放热促使了煤更易自燃;伴生硫化物在温度高于200℃以后整体表现为放热,在温度为565℃时达到放热峰值,这使得煤燃烧阶段的活化能降低,煤更易燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号