首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary production at Antarctic coastal sites is contributed from sea ice algae, phytoplankton and benthic algae. Oxygen microelectrodes were used to estimate sea ice and benthic primary production at several sites around Casey, a coastal area in eastern Antarctica. Maximum oxygen export from sea ice was 0.95 mmol O2 m−2 h−1 (~11.7 mg C m−2 h−1) while from the sediment it was 6.08 mmol O2 m−2 h−1 (~70.8 mg C m−2 h−1). When the ice was present O2 export from the benthos was either low or negative. Sea ice algae assimilation rates were up to 3.77 mg C (mg Chl-a)−1 h−1 while those from the benthos were up to 1.53 mg C (mg Chl-a)−1 h−1. The contribution of the major components of primary productivity was assessed using fluorometric techniques. When the ice was present approximately 55–65% of total daily primary production occurred in the sea ice with the remainder unequally partitioned between the sediment and the water column. When the ice was absent, the benthos contributed nearly 90% of the primary production.  相似文献   

2.
Plants growing in waterlogged environments are subjected to low oxygen levels around submerged tissues. While internal oxygen transport has been postulated as an important factor governing flooding tolerance, respiration rates and abilities to take up oxygen under hypoxic conditions have been largely ignored in plant studies. In this study, physiological characteristics related to internal oxygen transport, respiration, and oxygen affinity were studied in low intertidal marsh species (Spartina alterniflora and S. anglica) and middle to high intertidal species (S. densiflora, S. patens, S. foliosa, a S. alterniflora × S. foliosa hybrid, S. spartinae, and Distichlis spicata). These marsh plants were compared to the inland species S. pectinata and the crop species rice (Oryza sativa), corn (Zea mays), and oat (Avena sativa). Plants were grown in a greenhouse under simulated estuarine conditions. The low marsh species S. anglica was found to transport oxygen internally at rates up to 2.2 μmol O2 g fresh root weight−1 h−1. In contrast, marsh species from higher zones and crop species were found to transport significantly less oxygen internally, although rice plants were able to transport 1.4 μmol g−1 h−1. Under hypoxic conditions, low marsh species were better able to remove dissolved oxygen from the medium compared to higher marsh species and crops. The oxygen concentration at which respiration rates declined due to limited oxygen (P crit) was significantly lower in low marsh species compared to inland and crop species; P crit ranged from <4 μM O2 in the low marsh species S. anglica up to 20 μM in the inland species corn. Flooding-sensitive crop species had significantly higher aerobic respiration rates compared to flooding-tolerant species in this study. Crop species took up 3.6–6.7 μmol O2 g−1 h−1 while all but one marsh species took up <3.5 μmol O2 g−1 h−1. We conclude that oxygen transport, aerobic demand, and oxygen affinity all play important and interrelated roles in flood tolerance and salt marsh zonation.  相似文献   

3.
Herbivory is widely acknowledged as a key process determining the benthic community structure and resilience of coral reefs. Despite numerous studies that have examined herbivory across reef gradients in the Caribbean, few studies have directly quantified this process on Pacific reefs. Bioassays of two species of erect macroalgae (Sargassum swartzii and S. cristaefolium) were used to quantify variation in grazing intensity across seven habitats of varying depth and wave exposure on a mid-shelf reef in the northern Great Barrier Reef. Removal rates of Sargassum varied significantly among habitats, with both species displaying broadly similar patterns. The shallow habitats on the exposed aspect of the reef (i.e. reef crest, flat and back reef) experienced the highest reductions in mass (81.4–91.6% day−1) for both S. swartzii and S. cristaefolium, while the deeper exposed habitats (reef slope and base) displayed the lowest reductions (3.8–13.4% day−1) over a 24 h period. In contrast, the grazing intensity varied between the two species in the three habitats on the leeward aspect of the reef. Reductions in mass remained relatively high for S. swartzii on the patch reef and sheltered reef base and flat (62.7–76.5% day−1) but were considerably lower for S. cristaefolium (37.9–63.5% day−1) across the same habitats. Surprisingly, the rates of removal of Sargassum displayed no relationship with the density or biomass of roving herbivorous fishes or those species known to consume erect macroalgae, either collectively or independently. These results suggest that the relationship between browsing rates and herbivorous fish biomass is complex and may be driven by species that are underestimated in visual surveys. Direct quantification of browsing intensity using assays revealed a different pattern to inferences based on herbivore densities and highlights the potential difficulties of evaluating ecosystem processes based on visual census data alone.  相似文献   

4.
Respiration rates and elemental composition (carbon and nitrogen) were determined for four dominant oncaeid copepods (Triconia borealis, Triconia canadensis, Oncaea grossa and Oncaea parila) from 0–1,000 m depth in the western subarctic Pacific. Across the four species of which dry weight (DW) varied from 2.0 to 32 μg, respiration rates measured at in situ temperature (3°C) increased with DW, ranging from 0.84 to 7.4 nl O2 individual−1 h−1. Carbon (C) and nitrogen (N) composition of the four oncaeid species ranged from 49–57% of DW and 7.0–10.3% of DW, respectively, and the resultant C:N ratios were 4.8–8.3. The high C contents and C:N ratios were reflected by large accumulation of lipids in their body. Specific respiration rates (SR, a fraction of body C respired per day) ranged between 0.5 and 1.3% day−1. Respiration rates adjusted to a body size of 1 mg body N (i.e. adjusted metabolic rates, AMR) of the four oncaeid species [0.6–1.1 μl O2 (mg body N)−0.8 h−1 at 3°C] were significantly lower than those (1.7–5.1) reported in the literature for oithonid and calanoid copepods at the same temperature. The present results indicate that lower metabolic expenditure due to less active swimming (pseudopelagic life mode) together with rich energy reserve in the body (as lipids) are the characters of oncaeid copepods inhabiting in the epi- and mesopelagic zones of this region.  相似文献   

5.
Measurements of the defecation rate of Salpa thompsoni were made at several stations during two cruises west of the Antarctic Peninsula in 2004 and 2006. Rates were quantified in terms of number of pellets, pigment, carbon and nitrogen for a wide size range of both aggregate and solitary salps. Measured defecation rates were constant over several hours when salps were held at near-surface conditions from which they had been collected. The defecation rate per salp increased with both salp size and the ambient level of particulate organic matter (POM) in the upper water column. The weight-specific defecation rate ranged between 0.5 and 6% day−1 of salp body carbon, depending on the concentration of available particulate matter in the water. Carbon defecation rates were applied to biomass estimates of S. thompsoni to calculate daily carbon defecation rates for the populations sampled during the two cruises. Dense salp populations of over 400 mg C m−2 were calculated to produce about 20 mg C m−2 day−1, comparable to other major sources of vertical flux of organic material in the Southern Ocean. Measured sinking rates for salp fecal pellets indicated that the majority of this organic material could reach deep sediments within a few days, providing a fast and direct pathway for carbon to the deep ocean.  相似文献   

6.
Holothuroidea represent the dominant benthic megafauna in hadal trenches (~6,000–11,000 m), but little is known about their behaviour and functional role at such depths. Using a time-lapse camera at 8,074 m in the Peru–Chile Trench (SE Pacific Ocean), we provide the first in situ observations of locomotory activity for the elasipodid holothurian Elpidia atakama Belyaev in Shirshov Inst Oceanol 92:326–367, (1971). Time-lapse sequences reveal ‘run and mill’ behaviour whereby bouts of feeding activity are interspersed by periods of locomotion. Over the total observation period (20 h 25 min), we observed a mean (±SD) locomotion speed of 7.0 ± 5.7 BL h−1, but this increased to 10.9 ± 7.2 BL h−1 during active relocation and reduced to 4.8 ± 2.9 BL h−1 during feeding. These observations show E. atakama translocates and processes sediment at rates comparable to shallower species despite extreme hydrostatic pressure and remoteness from surface-derived food.  相似文献   

7.
While it is known that Antarctic sea ice biomass and productivity are highly variable over small spatial and temporal scales, there have been very few measurements from eastern Antarctic. Here we attempt to quantify the biomass and productivity and relate patterns of variability to sea ice latitude ice thickness and vertical distribution. Sea ice algal biomass in spring in 2002, 2003 and 2004 was low, in the range 0.01–8.41 mg Chl a m−2, with a mean and standard deviation of 2.08 ± 1.74 mg Chl a m−2 (n = 199). An increased concentration of algae at the bottom of the ice was most pronounced in thicker ice. There was little evidence to suggest that there was a gradient of biomass distribution with latitude. Maximum in situ production in 2002 was approximately 2.6 mg C m−2 h−1 with assimilation numbers of 0.73 mg C (mg Chl a)−1 h−1. Assimilation numbers determined by the 14C incubations in 2002 varied between 0.031 and 0.457 mg C (mg Chl a)−1 h−1. Maximum fluorescence quantum yields of the incubated ice samples in 2002 were 0.470 ± 0.041 with E k indices between 19 and 44 μmol photons m−2 s−1. These findings are consistent with the shade-adapted character of ice algal communities. In 2004 maximum in situ production was 5.9 mg C m−2 h−1 with an assimilation number of 5.4 mg C (mg Chl a)−1 h−1. Sea ice biomass increased with ice thickness but showed no correlation with latitude or the time the ice was collected. Forty-four percent of the biomass was located in bottom communities and these were more commonly found in thicker ice. Surface communities were uncommon.  相似文献   

8.
While qualitative observations of jellyfish intraguild predation abound in the literature, there are only few rate measurements of these interactions. We quantified predation rates among two common jellyfish in northern boreal waters, Cyanea capillata and its prey Aurelia aurita, both of which also feed on crustacean zooplankton and fish larvae. A series of incubation experiments using a wide range of prey concentrations (0.38–3.8 m−3) in large containers (2.6 m3) was carried out. By replenishing the prey continuously as they were captured we maintained a nearly constant prey concentrations. Ingestion rates increased linearly up to prey concentrations of 1.92 m−3, yielding maximum clearance rates of ∼2.37 ± 0.39 m3 predator−1 h−1 for C. capillata predators 16 ± 2.3 cm in diameter. Mean ingestion rate at saturated prey concentrations (1.92–3.85 m−3) was 4.01 ± 0.78 prey predator−1 h−1. Behavioral observations suggested that predators did not alter their swimming behavior during meals, and thus that feeding rates were generally handling limited rather than encounter limited. Predators captured more prey than needed, and semi-digested prey was often discarded when fresh prey was encountered.  相似文献   

9.
T. Kamiyama 《Marine Biology》1997,128(3):509-515
Growth and feeding rates of two tintinnid species, Favellaazorica and Favellataraikaensis, were determined under various concentrations of the dinoflagellate Heterocapsacircularisquama which has been reported as highly toxic to shellfish. Mean growth rates of F. azorica and F. taraikaensis on a diet of H.circularisquama (ca. 102 cells ml−1) were 2.15 and 1.97 doublings d−1, respectively. These values are similar to those on a diet of Heterocapsatriquetra which is suitable food for various zooplankton. However, growth rates of both tintinnid species decrease with increasing concentrations of >103 cells ml−1 of H. circularisquama. In particular, H. circularisquama under conditions of >103 cells ml−1 caused mortality in F.taraikaensis, probably due to toxins. Clearance and ingestion rates of F. azorica on H. circularisquama were 4.1 to 27.5 μl ind−1 h−1 and 1.5 to 28.7 cells ind−1 h−1, respectively, at concentrations of <104 cells ml−1 and those of F. taraikaensis were 0.9 to 22.1 μl ind−1 h−1 and 0.1 to 13.0 cells ind−1 h−1, respectively, at concentrations of <103 cells ml−1. Both clearance and ingestion rates on H.circularisquama were higher for replicates fed on H.triquetra. Daily grazing impact of the two species of Favella on the initial stage of a bloom of H.circularisquama were estimated to reach 6 to 50% of H. circularisquama at a concentration of 540 cells ml−1, indicating that grazing by tintinnids such as Favella spp. may significantly regulate the initial stages of blooms of H. circularisquama. Received: 3 January 1997 / Accepted: 27 January 1997  相似文献   

10.
Wrasses are abundant reef fishes and the second most speciose marine fish family, yet little is known of their larval swimming abilities. In August 2010 at Moorea, Society Islands, we measured swimming ability (critical speed, Ucrit) of 80 settlement-stage larvae (11–17 mm) of 5 labrid species (Thalassoma quinquevittatum [n = 67], Novaculichthys taeniourus [n = 6], Coris aygula [n = 5], Halichoeres trimaculatus [n = 1] and H. hortulanus [n = 1]) and 33 new recruits of T. quinquevittatum. Median (mdn) larval Ucrit was 7.6–12.5 cm s−1. In T. quinquevittatum (n = 67), larvae of 12.5–14.5 mm swam faster (mdn 16.9 cm s−1) than smaller or larger larvae (mdn 3.9 and 3.2 cm s−1, respectively). Labrid larvae Ucrit is similar to that of other similar-sized tropical larvae, so labrids and species with comparable settlement sizes should have similar abilities to influence dispersal. Ucrit of T. quinquevittatum recruits decreased to 47–56% of larval Ucrit in 2 days, implying rapid physiological changes at settlement.  相似文献   

11.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

12.
To better understand the feeding and reproductive ecology of euphausiids (krill) in different ocean environments, lipid classes and individual lipid components of four different species of euphausiids from Northeast Pacific (temperate species) and Southern Ocean (Antarctic species) were analyzed in animals from multiple life stages and seasons. The dominant krill species in the Northeast Pacific Euphausia pacifica and Thysanoessa spinifera, were compared to the two major Antarctic species, Euphausia superba and E. crystallorophias. Analysis comprised total lipid and lipid classes together with individual fatty acid and sterol composition in adults, juveniles, and larvae. Antarctic krill had much higher lipid content than their temperate relatives (10–50 and 5–20% of dry mass for Antarctic and temperate species, respectively) with significant seasonal variations observed. Phospholipids were the dominant lipid class in both temperate krill species, while neutral storage lipids (wax esters and triacylglycerols for E. crystallorophias and E. superba, respectively) were the major lipid class in Antarctic krill and accounted for up to 40% of the total lipid content. Important fatty acids, specifically 16:0, 18:1ω9, 20:5ω3, and 22:6ω3, were detected in all four krill species, with minor differences between species and seasons. Detailed lipid profiles suggest that krill alter their lipid composition with life stage and season. In particular, larval Antarctic krill appear to utilize alternate food resources (i.e., sea-ice associated organisms) during austral winter in contrast to juveniles and adults (i.e., seston and copepods). Lipid dynamics in krill among krill in both systems appear closely linked to their life cycle and environmental conditions including food availability, and can provide a more complete comparative ecology of euphausiids in these environmentally distinct systems.  相似文献   

13.
The photosynthetic adaptive features of non-dormant seeds in Posidonia oceanica were studied in order to evaluate the effects of light on germination success. Transmission electron micrographs showed the presence of chloroplasts in the epidermal cells, close to the nucleus at the periphery of the cytoplasm. The well-developed thylakoid membranes and the presence of starch granules indicated that the chloroplasts were photosynthetically active. The relationship between photosynthesis versus irradiance in P. oceanica seeds incubated at 15 and 21°C was analysed. The net photosynthesis in the non-dormant seed of P. oceanica was positive and compensated its respiration demand (90 μmol quanta m−2 s−1) at both temperatures. Net photosynthesis was negative at the other irradiance values. To test the effects of light on germination success, seeds were placed both in dark and light conditions. Germination success was significantly higher in light rather than in dark condition. The characteristics observed in the photosynthesis in P. oceanica seed could be a mechanism to guarantee seedling survival in temperate waters, demonstrating though the specialized nature of this species.  相似文献   

14.
Great scallop, Pecten maximus, and blue mussel, Mytilus edulis, clearance rate (CR) responses to low natural seston concentrations were investigated in the laboratory to study (1) short-term CR variations in individual bivalves exposed to a single low seston diet, and (2) seasonal variations in average CR responses of bivalve cohorts to natural environmental variations. On a short temporal scale, mean CR response of both species to 0.06 μg L−1 chlorophyll a (Chl a) and 0.23 mg L−1 suspended particulate matter (SPM) remained constant despite large intra-individual fluctuations in CR. In the seasonal study, cohorts of each species were exposed to four seston treatments consisting of ambient and diluted natural seston that ranged in mean concentration from 0.15 to 0.43 mg L−1 SPM, 0.01 to 0.88 μg L−1 Chl a, 36 to 131 μg L−1 particulate organic carbon and 0.019 to 0.330 mm3 L−1 particle volume. Although food abundance in all treatments was low, the nutritional quality of the seston was relatively high (e.g., mean particulate organic content ranged from 68 to 75%). Under these low seston conditions, a high percentage of P. maximus (81–98%) and M. edulis (67–97%) actively cleared particles at mean rates between 9 and 12 and between 4 and 6 L g−1 h−1, respectively. For both species, minimum mean CR values were obtained for animals exposed to the lowest seston concentrations. Within treatments, P. maximus showed a greater degree of seasonality in CR than M. edulis, which fed at a relatively constant rate despite seasonal changes in food and temperature. P. maximus showed a non-linear CR response to increasing Chl a levels, with rates increasing to a maximum at approximately 0.4 μg L−1 Chl a and then decreasing as food quantity continued to increase. Mean CR of M. edulis also peaked at a similar concentration, but remained high and stable as the food supply continued to increase and as temperatures varied between 4.6 and 19.6°C. The results show that P. maximus and M. edulis from a low seston environment, do not stop suspension-feeding at very low seston quantities; a result that contradicts previous conclusions on the suspension-feeding behavior of bivalve mollusks and which is pertinent to interpreting the biogeographic distribution of bivalve mollusks and site suitability for aquaculture.  相似文献   

15.
The scaling of metabolic rates with body mass is one of the best known and most studied characteristics of aquatic animals. Herein, we studied how size is related to oxygen consumption, ammonia excretion, and ingestion rates in tropical (Octopus maya) and cold-water (Enteroctopus megalocyathus) cephalopod species in an attempt to understand how size affects their metabolism. We also looked at how cephalopod metabolisms are modulated by temperature by constructing the relationship between metabolism and temperature for some benthic octopod species. Finally, we estimated the energy balance for O. maya and E. megalocyathus in order to validate the use of this information for aquaculture or fisheries management. In both species, oxygen consumption and ammonia excretion increased allometrically with increasing body weight (BW) expressed as Y = aBW b . For oxygen consumption, b was 0.71 and 0.69 for E. megalocyathus and O. maya, respectively, and for ammonia excretion it was 0.37 and 0.43. Both species had low O/N ratios, indicating an apparent dependence on protein energy. The mean ingestion rates for E. megalocyathus (3.1 ± 0.2% its BW day−1) and O. maya (2.9 ± 0.5% its BW day−1) indicate that voracity, which is characteristic of cephalopods, could be independent of species. The scope for growth (P = I − (H + U + R) estimated for E. megalocyathus was 28% higher than that observed in O. maya (320 vs. 249 kJ day−1 kg−1). Thus, cold-water cephalopod species could be more efficient than tropical species. The protein and respiratory metabolisms of O. maya, E. megalocyathus, and other octopod species are directly dependent on temperature. Our results offer complementary evidence that, as Clarke (2004) stated, the metabolic response (R and U) cannot be determined mechanistically by temperature, as previously proposed (Gillooly et al. 2002).  相似文献   

16.
Seasonal variations and the effect of reproductive development on resource acquisition by two intertidal fucoid species, the iteroparous Fucus serratus L. and the semelparous Himanthalia elongata (L.) S. F. Gray were examined. The oxygen-exchange characteristics of vegetative apical tissue of both non-fertile and fertile plants and receptacle tissue were compared at monthly intervals throughout reproductive development. Respiratory rates in non-fertile F. serratus varied seasonally between 1.5 and 8.0 μmol g−1 fresh wt h−1; in fertile plants the receptacle had a significantly lower respiratory rate than the vegetative tissue. The respiratory rate of the vegetative button of fertile H. elongata displayed less seasonal variation and was lower than that of the receptacle, which varied from a maximum of 9.5 μmol g−1 fresh wt h−1 at receptacle initiation in October to a minimum of 2.0 μmol g−1 fresh wt h−1 in February. The maximum photosynthetic rate (P max) of non-fertile plants of both species did not vary in a distinct seasonal manner (∼60 μmol g−1 fresh wt h−1 for F. serratus and ∼12 μmol g−1 fresh wt h−1 for H. elongata). In fertile plants, the P max of the receptacle tissue was (∼50% lower in F. serratus, and at its peak three times higher in H. elongata, than that of vegetative tissue. The stable carbon-isotope ratio (δ13C) did not differ between different tissue types in F. serratus, but values did vary seasonally, being less negative in the summer than in the winter (−13.5‰ compared to −18‰). The receptacle tissue of H. elongata also displayed a distinct seasonal variation in δ13C values (−12‰ in summer, −16‰ in winter), whilst the δ13C of the vegetative button did not vary seasonally. The rate of uptake of inorganic nitrogen by the vegetative thallus was lower in H. elongata than in F. serratus. The receptacle tissue of F. serratus had lower uptake rates than the vegetative tissue, whilst the uptake rate by H. elongata receptacle tissue was higher than that of the vegetative button. Received: 14 March 1997 / Accepted: 22 April 1997  相似文献   

17.
Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).  相似文献   

18.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine, demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R 2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall, 74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically. Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm, and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their pelagic period.  相似文献   

19.
Distribution, density, and feeding dynamics of the pelagic tunicate Salpa thompsoni have been investigated during the expedition ANTARKTIS XVIII/5b to the Eastern Bellingshausen Sea on board RV Polarstern in April 2001. This expedition was the German contribution to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo stations. Their densities in the RMT-8 samples were low and did not exceed 4.8 ind m−2 and 7.4 mg C m−2. However, maximum salp densities sampled with the Bongo net reached 56 ind m−2 and 341 mg C m−2. A bimodal salp length frequency distribution was recorded over the shelf, and suggested two recent budding events. This was also confirmed by the developmental stage composition of solitary forms. Ingestion rates of aggregate forms increased from 2.8 to 13.9 μg (pig) ind−1 day−1 or from 0.25 to 2.38 mg C ind−1 day−1 in salps from 10 to 40 mm oral-atrial length, accounting for 25–75% of body carbon per day. Faecal pellet production rates were on average 0.08 pellet ind−1 h−1 with a pronounced diel pattern. Daily individual egestion rates in 13 and 30 mm aggregates ranged from 0.6 to 4.8 μg (pig) day−1 or from 164 to 239 μg C day−1. Assimilation efficiency ranged from 73 to 90% and from 65 to 76% in 13 and 30 mm aggregates, respectively. S. thompsoni exhibited similar ingestion and egestion rates previously estimated for low Antarctic (~50°S) habitats. It has been suggested that the salp population was able to develop in the Eastern Bellingshausen Sea due to an intrusion into the area of the warm Upper Circumpolar Deep Water  相似文献   

20.
This study investigated the occurrence and ontogenetic changes of halogenated secondary metabolites in planktotrophic and lecithotrophic larvae and adults of two common, infaunal polychaetes, Streblospio benedicti (Spionidae) and Capitella sp. I (Capitellidae), with different life-history traits. S. benedicti contains at least 11 chlorinated and brominated hydrocarbons (alkyl halides) while Capitella sp. I contains 3 brominated aromatic compounds. These halogenated metabolites are potential defense compounds benefiting both larvae and adults. We hypothesized that: (1) planktotrophic larvae contain halogenated metabolites because they are not protected by adult defenses, (2) quantitative and qualitative variation of planktotrophic larval halogenated metabolites parallels that of adults, and (3) brooded lecithotrophic larvae initiate the production of halogenated metabolites only after metamorphosis. To address these hypotheses, volatile halogenated compounds from polychaete extracts were separated using capillary gas chromatography and identified and quantified using mass spectrometry with selected ion monitoring. All four life stages (pre- and post-release larvae, new recruits, adults) of both S. benedicti and Capitella sp. I contained the halogenated metabolites previously identified from adults. This is the first report of halocompounds identified and quantified in polychaete larvae. Allocation of potential defense compounds to offspring varied as a function of species, feeding type and developmental stage. Pre-release larvae of S. benedicti with planktotrophic development contained the lowest concentration of total halogenated metabolites (1.75 ± 0.65 ng mm−3), post-release and new recruits contained intermediate concentrations (8.29 ± 1.72 and 4.73 ± 2.63 ng mm−3, respectively), and planktotrophic adults contained significantly greater amounts (28.9 ± 9.7 ng mm−3). This pattern of increasing concentrations with increasing stage of development suggests synthesis of metabolites during development. Lecithotrophic S. benedicti post-release larvae contained the greatest concentrations of halometabolites (71.1 ± 10.6 ng mm−3) of all S. benedicti life stages and developmental types examined, while the amount was significantly lower in new recruits (34.0 ± 15.4 ng mm−3). This pattern is consistent with a previously proposed hypothesis suggesting a strategy of reducing potential autotoxicity during developmental transitions. Pre-release lecithotrophic larvae of Capitella sp. I contained the highest concentration of total halogenated metabolites (1150 ± 681 ng mm−3), whereas the adults contained significantly lower total amounts (126 ± 68 ng mm−3). All concentrations of these haloaromatics are above those known to deter predation in previously conducted laboratory and field trials. As a means of conferring higher larval survivorship, lecithotrophic females of both species examined may be expending more energy on chemical defenses than their planktotrophic counterparts by supplying their lecithotrophic embryos with more of these compounds, their precursors, or with energy for their synthesis. This strategy appears common among marine lecithotrophic larval forms. Received: 14 July 1999 / Accepted: 20 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号