首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
有色金属开采冶炼、工业排污及农业污水灌溉等导致大量砷(As)进入土壤,土壤砷污染问题日益突出。砷与磷(P)为同主族元素,具有相似的化学性质和化学行为,砷通过植物根系的磷转运蛋白被植物吸收。砷在植物体内竞争取代化合物中的磷,并与巯基结合导致蛋白失活,影响植物生长和正常生理代谢。然而亦有研究发现,一定浓度的砷可影响植物生理生化过程,并对植物生长产生促进作用。本文综述了砷在植物体内的含量与分布,重点阐述砷对植物生物量、营养元素吸收、生长代谢相关生理生化指标(内源激素、光合参数、丙二醛、抗氧化酶、渗透物质)及根际环境和植物促生菌群落的影响与机制,以期为理解砷促进超富集植物生长机制的研究提供理论基础,为挖掘可降低砷毒性和提高砷抗性的方法过程机制提供技术参考。  相似文献   

2.
三七是中国特有的珍稀药用植物,其生长环境受地域、气候、土壤等条件的限制,仅云南省文山州三七产量高、品质好。但由于矿业开采、工业生产等因素使得土壤砷的背景值超标,逐渐威胁三七的正常生长及其产品质量。因此,如何降低三七砷污染是目前迫切需要解决的问题。磷与砷具有相似的结构和理化性质,利用磷与砷在土壤中的拮抗效应,达到控制土壤砷危害的效果。本研究利用同步辐射X射线荧光方法(SRXRF)和高效液相色谱-原子荧光联用技术(HPLC-HG-AFS)相结合对参试三七植株进行分析测定,从细胞微区组织层面揭示药用植物三七在外源磷素作用下吸收As和P的相对含量分布规律和三七植株各部位的砷形态及含量特征,以及各部位的生物转运系数及富集系数的变化。结果表明:磷和砷在三七主根部的相对含量荧光分析中保持分布规律一致的特性,说明三七根部吸收磷和砷的点位相同;添加外源磷素处理可以有效降低三七各部位三价砷和五价砷的含量,最大降幅达50%,同时可以降低根部对砷的吸收富集系数;试验中仅添加五价砷元素,但在三七植株各部位均检出三价砷,说明三七体内存在着砷还原机制;其中茎部的三价砷的含量均高于五价砷,推测茎是三七体内砷还原反应的主要场所。  相似文献   

3.
环境砷污染是一个全球性问题.研究砷的生物地球化学循环可以明确环境中砷的来源及其转化特征,为探索砷污染治理的方法提供参考.越来越多的研究表明,自然界中的微生物在砷的迁移转化过程中发挥了重要作用.根据微生物对砷的代谢机制不同将其分为:砷氧化微生物、砷还原微生物和砷甲基化微生物.砷氧化微生物可以将环境中的As(Ⅲ)氧化为毒性较弱并且容易被铁铝矿物吸附固定的As(Ⅴ),因此对降低环境中的砷毒性具有重要作用;微生物对砷的甲基化作用的产物通常为毒性较低的有机砷,因此也被认为是理想的修复环境砷污染的生物手段之一;然而在还原环境中,砷还原微生物却可以将游离态和结合态的As(Ⅴ)还原为毒性更强的As(Ⅲ),从而加重环境中的砷污染状况.由此可见,明确微生物的砷代谢机制及其对砷污染环境中砷迁移转化的影响,是实现生物修复砷污染环境的必要前提.论文总结了近年来国内外微生物砷代谢机制的研究进展,以期为深入研究微生物代谢砷的机理及其在砷污染治理中的应用提供参考.  相似文献   

4.
砷是一种强毒性化学物质,毒性不但与其在环境中的总量有关,更与其化学形态密切相关。砷在海洋环境中普遍存在,而海洋生物体内砷化合物的含量较高,是海洋环境中的"砷库"。本文结合国内外对海洋生物体内总砷及砷形态的分析,总结了国内外对各类海洋生物,包括海藻、海葵、多毛类、贝类、鱼类和其他高营养级海洋动物体内不同形态砷含量、累积和形态转化等研究概况和进展。针对目前研究工作和技术水平差异,建议我国应在检测技术、样品前处理、标准品制备、砷对生物体的健康效应等方面开展深入研究,以期揭示海洋生物对砷的累积规律、形态转化机制以及在人类体内代谢过程与危害性,为保护海洋生态环境、维护海洋食品安全提供科学依据。  相似文献   

5.
链霉菌的抗砷特性及其对蜈蚣草富集砷的作用   总被引:2,自引:0,他引:2  
本文研究了链霉菌Streptomyces sp.的耐砷特性及其对蜈蚣草富集砷的影响。结果表明,Streptomyces sp.可在100mmo·lL-1的砷酸盐溶液中生长,具有较强的抗砷毒害能力,且在48h内对As(Ⅴ)的还原率达96.5%。施用Streptomyces sp.能促进植物对砷的吸收,蜈蚣草地上部砷浓度为930mg·kg-1,地上部砷累积量达到对照组的2.09倍。加入Streptomyces sp.后,能促进根际土壤中As(Ⅴ)还原成As(Ⅲ),大幅度降低根际土壤残渣态砷含量,从48.15mg·kg-1下降至28.75mg·kg-1。Streptomyces sp.通过影响蜈蚣草根际环境,提高根际土壤pH,增加DOC含量,促使砷形态变化,从而增加砷生物可利用性。该菌可作为强化蜈蚣草修复砷污染土壤的材料。  相似文献   

6.
砷(As)主要通过硅和磷通道进入水稻根系,合理的硅和磷施用方式可有效调控水稻对As的吸收转运。研究通过在水稻育秧阶段进行硅或磷富集,探讨富硅或富磷秧苗移栽至As污染土壤后对糙米As含量的影响及分子机制。试验结果表明,富硅或富磷育秧在不影响生长的前提下,可使秧苗的硅或磷整株吸收量分别增至对照的19.6和2.3倍。与常规育秧相比,富硅育秧处理糙米中总砷、三价砷、五价砷以及二甲基砷含量分别降低31.1%、32.1%、58.3%、33.5%。富磷育秧对糙米总砷含量没有显著影响,但使糙米五价砷含量降低59.2%。富硅或富磷育秧可显著增加As在水稻根系中的滞留且不同程度影响As在水稻各部位之间的转移系数。根系As转运基因相对表达量的分析结果表明,与对照相比,富硅育秧对OsLsi1的相对表达量没有显著影响,使OsLsi2的相对表达量下调26%,OsABCC1的相对表达量上调203%;富磷育秧对OsPT1的相对表达量没有显著影响,使OsPT4以及OsPT8的相对表达量分别下降51%和71%,OsABCC1的相对表达量上调22%。综上,富硅或富磷育秧可通过调控水稻根系As相关转运基因的表达来影响水稻对A...  相似文献   

7.
砷(As)和磷(P)为同主族化学类似物,具有相似的化学性质和化学行为。As因赋存形态多变、极强的生物蓄积性及高毒性而被广泛关注,在土壤中主要以砷酸盐(As5+)形式存在。磷是植物必需营养元素,亦是引起土壤面源污染和水体富营养化的重要因子。土壤中磷主要以有机磷形式存在,占比40%~95%。其中植酸是重要组成部分,占总磷的20%~50%,占有机磷的50%~80%。植酸分子含有6个磷酸基团和12个可解离质子,因此可通过螯合、置换、酸化等作用强烈影响土壤中砷和磷的赋存形态和生物有效性。明确土壤中植酸对砷和磷赋存形态转化与释放的影响、过程与作用机制,对有效阻控土壤和水体砷、磷污染具有重要意义。该研究总结了土壤中砷、磷和植酸的含量、来源与赋存形态,重点阐述植酸对砷、磷赋存形态转化、生物有效性变化的影响与机制,可为降低土壤和沉积物砷、磷污染提供参考。  相似文献   

8.
为探索缓解水稻砷毒害的农艺措施,以耐低磷水稻99011和低磷敏感水稻99012为材料,通过土培试验,研究水分、磷用量及其交互作用对不同砷浓度酸性土壤中水稻根表铁膜以及植物体内砷分配的影响。结果表明,节水灌溉(干湿交替)明显减少水稻根表铁膜量,降低铁膜、根系、秸秆、颖壳和精米中的砷含量。与30mg·kg-1P2O5相比,180mg·kg-1P2O5能明显减少两个品种水稻的根表铁膜量以及根系和秸秆中的砷含量;对耐低磷品种铁膜砷含量影响不大,但显著降低磷敏感品种铁膜砷含量;在50mg·kg-1砷处理中增加磷用量对水稻颖壳砷含量影响不大,在100mg·kg-1砷处理时能显著降低颖壳砷含量;增加磷用量可明显增加耐低磷品种的精米砷含量,降低磷敏感品种的精米砷含量。水、磷交互效应主要受水分效应的影响。加砷处理后,相同处理下耐低磷品种的根表铁膜量和铁膜中的砷含量显著高于磷敏感品种,而根系、秸秆、颖壳和精米中的砷含量则相反。研究表明,可以通过节水灌溉,并根据砷污染程度和植物磷营养特性确定适当的磷肥用量,从而减少砷在水稻体内的累积,提高食品安全。  相似文献   

9.
人工纳米颗粒的植物毒性及其在植物中的吸收和累积   总被引:7,自引:0,他引:7  
人工纳米颗粒(engineered nanoparticles,ENPs)在被广泛应用的同时,其潜在的环境风险和对健康的影响引起国内外的广泛重视。植物是人们的主要食物来源,ENPs可能被植物吸收并累积在可食部分,随食物链进入人体而引起健康风险。因此,ENPs的植物毒性及其在植物中的吸收和累积受到越来越多的关注。总结了ENPs的植物毒性及植物对ENPs的吸收、运输和累积,讨论了可能的致毒机制、影响其毒性的因素以及植物的解毒机制,并对未来应该注重开展的研究进行了展望。  相似文献   

10.
硅促进水稻种子萌发及缓解幼苗砷毒性的效应研究   总被引:2,自引:0,他引:2  
通过As~(Ⅲ)胁迫下水稻种子的发芽试验和幼苗毒性试验,研究了外源硅对水稻种子发芽率、幼苗生长的影响及其缓解幼苗砷毒性的效应。外源硅的2种处理方式为种子萌发时添加外源硅(Si1)和采用硅处理液浸种(Si2)。结果表明,发芽时介质中As浓度达到10 mg·L~(-1)时显著抑制水稻种子萌发(P0.05),发芽率仅为80%,但是Si1和Si2处理下发芽率则提高到97%和100%,这说明外源硅可促进砷胁迫下水稻种子萌发;砷浓度≥5 mg·L~(-1)时,Si1和Si2处理均可提高水稻的相对幼苗高度和根耐性指数,提高幅度分别为6.00%~16.8%和57.9%~77.0%、7.10%~23.5%和54.2%~61.2%,并且降低了水稻幼苗砷含量,降低幅度分别为17.8%~21.4%和31.0%~49.1%。这说明外源硅处理可促进砷胁迫下水稻幼苗的生长;不同砷浓度处理与水稻芽长、根长及幼苗干重之间存在"S"型的剂量-效应关系,且外源硅显著提高了相应的EC50,缓解了砷对水稻幼苗生长的毒性。综上所述,砷胁迫下水稻种子萌发时添加外源硅或采用硅处理液浸种均可促进水稻种子萌发和幼苗生长,并降低了幼苗砷累积和缓解砷对水稻幼苗的毒性。  相似文献   

11.
由于广泛的采矿和工业活动,土壤砷污染已成为全球环境问题之一。蜈蚣草(Pteris vittata L.)作为世界上首次被发现的砷超累积植物,被认为是一种修复土壤砷污染的理想植物。蜈蚣草对砷的吸收和转运过程会受多种因素调控,其中蜈蚣草内生菌能够促进这一过程,然而目前关于微生物促进蜈蚣草砷富集的响应机制方面的研究报道还很少。为探明蜈蚣草内生微生物对砷污染的响应机制,采用不同砷添加量(0、250、500 mg·kg-1)进行蜈蚣草盆栽试验,结合蜈蚣草根际土、根和茎叶砷含量分析及对应微生物群落分析,研究砷污染对蜈蚣草根际及内生微生物群落结构的影响及相关性。结果表明,砷在蜈蚣草茎叶中的富集量远高于根内砷含量,当土壤砷污染水平分别为250 mg·kg-1和500 mg·kg-1时,蜈蚣草茎叶砷富集系数分别为99.99和66.83,转运系数分别为103.53和93.98。微生物群落多样性结果表明,砷胁迫对微生物群落结构具有显著影响(P=0.001),砷污染对蜈蚣草根际土微生物群落结构的影响大于对内生微生物群落结构的影响,其中根瘤菌目是...  相似文献   

12.
以广东省莲花山钨矿区耕地为研究点,研究土壤金属含量分布、形态特征及其调控措施。分析耕地土壤中Zn、Cu、Mn、Ni、Pb、Cd、As含量特征,以碱石灰、MnO2、Fe2O3和钙镁磷肥作为改良剂,对矿区污染耕地土壤进行改良,并种植萝卜Raphanus sativus,分析各改良剂对土壤金属形态及其在土壤-农作物界面迁移的影响。研究表明,矿区耕地土壤酸化, Zn、Mn、Pb、Cd和As超过土壤背景值,其中Cd和As污染严重,分别超过背景值的10.2-16.7倍和1.1-1.3倍。碱石灰有效降低耕地土壤pH值,降低土壤Zn、Cu、Mn、Ni、Pb、Cd可溶态含量,减少其在萝卜中积累。萝卜对Pb、Zn、Cd、Cu、Ni累积量与其可溶态含量相关性显著,与总量相关性不显著。Fe2O3、MnO2、钙镁磷肥对耕地土壤Zn、Cu、Ni、Mn、Pb、Cd 生物有效性及其在农作物中累积量无显著影响。矿区耕地土壤分别添加碱石灰、Fe2O3、MnO2,土壤中砷松散结合态含量降低,农作物砷累积量减少。钙镁磷肥对土壤砷形态无显著影响,但能显著降低萝卜中砷的累积量。碱石灰分别与Fe2O3、MnO2、钙镁磷肥相结合改良耕地土壤,比单一改良剂更能有效降低萝卜中砷的累积量。萝卜中砷累积量与松散结合态存在显著正相关性,与Ca-As存在显著负相关性。碱石灰分别和Fe2O3、钙镁磷肥同时加入土壤,能同时地有效降低Zn、Cu、Mn、Ni、Pb、Cd、As的有效性,及其在农作物累积量,因此,这2种改良方式是莲花山矿区土壤金属固定的有效措施。  相似文献   

13.
浮游植物是海洋生态系统的主要初级生产者,同时作为食物也是许多水生生物摄取汞的主要途径。本文综述了近年来汞在海洋浮游植物中的最新研究进展,包括汞在浮游植物中的吸收、累积规律及其影响因素,汞对浮游植物的毒性效应(生长抑制、光合作用影响)以及生物的适应机制(汞的还原、螯合解毒、矿化固定等),最后对浮游植物中汞累积和毒性的未来研究方向进行了展望。  相似文献   

14.
植物砷吸收与代谢的研究进展   总被引:12,自引:0,他引:12  
砷(As)作为一种植物非必需的类金属元素广泛存在于自然界中,砷过量摄人不仅会对植物生长产生毒害作用,而且在植物的可食部位累积并通过食物链对人体健康构成威胁.生长介质中的砷酸盐(五价砷)一般是通过磷酸盐转运蛋白被植物吸收的,而亚砷酸(三价砷)和没有解离的甲基化砷则主要是通过质膜上的水通道蛋白被植物吸收的.在植物体内五价砷...  相似文献   

15.
无机砷在植物和微生物体内的代谢机制研究进展   总被引:2,自引:2,他引:0  
砷污染是全球的热点问题之一.土壤中的无机砷在植物中的积累可通过食物链传递,从而对人体健康构成严重威胁.了解微生物和植物对无机砷的代谢机制,对认识和控制土壤中砷的风险至关重要.近年来,微生物对无机砷的代谢机制研究已经比较深入,但是仍有一些问题亟待解决,如信号传导、抗砷基因筛选等.在植物对无机砷的摄取、还原机制等方面也取得了一定进展,但是植物体内砷的转运机制、排出机制等仍有待进一步研究.论文综述了微生物、植物体内无机砷的代谢过程中,砷摄取、转运、还原和排出机制的最新进展,并对今后的研究方向进行了展望.  相似文献   

16.
以1个耐低磷和1个低磷敏感水稻为材料,通过土培试验研究磷、砷双重胁迫对水稻苗期生物学特性及磷、砷吸收的影响,并比较不同品种之间的差异.结果表明,相同磷水平下,外加砷浓度为小于25 mg/kg时,水稻的生物量、叶宽、株高、SPAD值及磷吸收量均随砷浓度的增加而增加,当砷浓度达到50 mg/kg时开始下降,两个品种表现相同趋势.说明少量砷可以刺激水稻生长,促进磷的吸收,砷用量过多则抑制水稻的生长及磷的吸收.相同砷水平下,水稻生物学性状及磷、砷吸收量随磷用量的增加而增加,两个品种亦表现相同趋势.说明适当施磷肥可以缓解砷对水稻生长的抑制作用.上述结果表明,低浓度的磷、砷具有协同效应,高浓度的磷、砷表现拮抗作用.此外,相同磷、砷水平下,供试耐低磷水稻的生物学性状及其相对值较低磷敏感水稻大;但相对磷吸收量(除磷处理为150 mg/kg外)比低磷敏感水稻小,而砷吸收量及其相对值均比低磷敏感水稻多,这可能与二者的磷营养特性及水稻对磷和砷的竞争吸收有关.图7表1参19  相似文献   

17.
根际促生菌影响植物吸收和转运重金属的研究进展   总被引:4,自引:0,他引:4  
土壤重金属污染对生态环境和人类健康造成严重危害,使得土壤重金属污染修复成为全球关注的研究热点之一。根际土壤中存在着数量和种类丰富的微生物种群,是根际环境中最重要的生物因素。重金属污染土壤中根际微生物与植物根系以及土壤形成特殊根际微环境,影响植物重金吸收、转运过程。根际促生菌通过产生植物生长激素类物质促进植物生长,改变根际微环境中重金属元素生物有效性,增加修复植物重金属吸收量,强化重金属污染土壤植物修复效率。近年来,根际促生菌强化重金属污染土壤植物修复效率相关研究文献数量迅速增加,最新研究成果表明:根际促生菌通过菌体表面活性基团吸附,诱导植物系统抗性(ISR),激活植物抗氧化酶活性,分泌高亲和性铁载体(Siderophores)增加根际铁供给量,竞争性抑制重金属元素的根系吸收,改变植物重金属的吸收、转运及胞内分布过程,抑制重金属元素向植物地上部分转运,同时增加农作物产量。文章对根际促生菌影响植物重金属吸收﹑转运最新研究进展进行综述,提出根际促生菌原位定殖,重金属元素亚细胞分布和重金属吸收、转运分子调控机制等方面的深入研究,将有助于进一步阐明重金属污染土壤植物根际促生菌-植物相互作用机制。通过根际促生菌调控农作物可食部分重金属的累积量,为实现中低污染农田安全生产与修复研究提供新思路。  相似文献   

18.
微生物砷还原机制的研究进展   总被引:2,自引:1,他引:1  
砷是一种剧毒物质,环境中的砷对人体健康存在潜在威胁,因此长期以来备受关注.微生物的各种代谢过程对砷在环境中的归趋起着重要作用,其中砷还原微生物能将吸附于固体矿物中的As(Ⅴ)还原为可溶性强的As(Ⅲ),使砷进入液相,从而加剧了地下水等饮用水源的砷污染.论文主要介绍了两种微生物砷还原机制(异化砷还原和细胞质砷还原)在作用...  相似文献   

19.
丛枝菌根对土壤-植物系统中重金属迁移转化的影响   总被引:9,自引:0,他引:9  
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是一类在自然和农业生态系统中广泛存在并能与多数陆生植物形成共生关系的土壤真菌,在重金属污染土壤中对宿主植物的生长及吸收累积重金属具有重要影响,因而对污染土壤的生物修复具有潜在应用价值。以重金属从根际土壤进入植物并在植物体内再分配过程为主线,介绍丛枝菌根在这一过程中对重金属环境行为,特别是根际土壤中重金属赋存形态及植物吸收重金属的影响。最后,对丛枝菌根影响植物重金属耐性机制研究前沿和菌根修复技术的应用前景进行展望。  相似文献   

20.
汞、砷复合污染对水稻生长及吸收汞、砷的影响   总被引:3,自引:1,他引:2  
在温室条件下,采用水培方法研究汞、砷复合污染对水稻的生长及对汞、砷吸收的影响.实验结果表明:1)汞、砷复合污染可以显著地降低水稻生物量,汞、砷具有显著的交互作用.2)营养液中汞浓度大于0.5mg·L-1时,可显著降低水稻光合速率、二氧化碳气孔导度、蒸腾速率(p<0.001),而砷的影响不显著.3)随营养液中汞浓度的增加,水稻根部和地上部汞含量显著增加,砷对水稻吸收汞的影响不显著,二者无交互作用.随营养液中砷浓度的增加,砷在水稻根部和地上部的累积显著提高,营养液中的汞显著抑制了水稻根部对砷的吸收,二者表现为拮抗作用;而汞对砷在水稻地上部累积的影响则较复杂,随着汞浓度由0.5mg·L-1增加到1.5mg·L-1,水稻地上部砷含量表现出先降低再升高的趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号