首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
提出了一种新的绿矾综合利用的途径,即绿矾经碳酸盐转化,然后采用无烟煤作还原剂,CaCO3为添加剂,进行高温还原焙烧制取还原铁粉.先将绿矾用水溶解,用理论量1.2倍的(NH4)2CO3将FeSO4转化为FeCO3,FeCO3焙烧的最佳条件是FeCO3∶无烟煤∶CaCO3为100∶60∶8,焙烧温度为1000℃,焙烧时间为4.5 h.粗还原铁粉化学成分除C含量较高外,符合国家有关标准,900℃左右经氢气精还原1 h所得精还原铁粉化学成分的各项指标,均达到或优于国家有关标准的要求.  相似文献   

2.
以二甘醇/乙二醇醇热法制备了超顺磁性纳米Fe_3O_4,采用场发射扫描电子显微镜(FE-SEM)、X射线衍射(XRD)以及磁滞回线等手段对制备的纳米Fe_3O_4进行表征,并通过纳米Fe_3O_4/H_2O_2类Fenton反应降解罗丹明B废水考察了纳米Fe_3O_4/H_2O_2的性能及其稳定性。研究表明,制备的纳米Fe_3O_4不仅分散性好、规整球状结构,磁性强且粒径比较均匀,平均粒径约为80 nm;从单因素实验(纳米Fe_3O_4投加量、H_2O_2/Fe_3O_4的摩尔比、pH以及反应时间)与正交实验获得了最佳反应条件:纳米Fe_3O_4投加量为2 g·L~(-1),pH=4,H_2O_2/Fe_3O_4摩尔比为4∶1,反应时间为3 h,此时罗丹明B与TOC去除率分别为100%和35%。重复4次使用纳米Fe_3O_4,通过表征发现纳米Fe_3O_4颗粒的晶体结构不变但是发生了团聚,纳米Fe_3O_4的催化性能有所下降。  相似文献   

3.
提出了一种新的绿矾综合利用的途径,即绿矾经碳酸盐转化,然后采用无烟煤作还原剂,CaCO3为添加剂,进行高温还原焙烧制取还原铁粉.先将绿矾用水溶解,用理论量1.2倍的(NH4)2CO3将FeSO4转化为FeCO3,FeCO3焙烧的最佳条件是FeCO3∶无烟煤∶CaCO3为100∶60∶8,焙烧温度为1000℃,焙烧时间为4.5 h.粗还原铁粉化学成分除C含量较高外,符合国家有关标准,900℃左右经氢气精还原1 h所得精还原铁粉化学成分的各项指标,均达到或优于国家有关标准的要求.  相似文献   

4.
以赤泥为主要原料,采用FeCl3、柠檬酸、聚硅酸等对赤泥进行活化处理,并制成粒径约3mm的球形赤泥除氟剂。采用X射线衍射(XRD)对赤泥除氟剂进行了物相分析,并研究了活化剂种类、活化剂浓度、焙烧温度等对赤泥除氟剂除氟性能的影响。结果表明:3种活化剂中,柠檬酸活化效果最好,而最佳焙烧温度与活化剂的种类有关。采用质量分数为5%的柠檬酸进行活化,焙烧温度500℃、焙烧时间2h的赤泥除氟剂除氟效果最佳,吸附率达99%以上,吸附容量为0.95mg/g,氟离子质量浓度可从19.00mg/L降低到0.07mg/L。  相似文献   

5.
赤泥是一种多孔物质,其比表面积大,具有较好的吸附性能。以赤泥为原料,加入一定量的Na_2SiO_3、Ca O及碳粉等添加剂,制备成约3 mm的球形颗粒。采用差热分析与X-射线粉末衍射技术相结合对赤泥原料及赤泥除氟剂高温焙烧过程的物相变化进行研究,同时研究了吸附时间、焙烧温度、焙烧时间对赤泥除氟剂除氟性能的影响。结果表明:在高温焙烧过程中,赤泥除氟剂原料的物相变化主要发生在800℃以下的温度。赤泥除氟剂的最佳焙烧温度为700℃,最佳焙烧时间为2 h,溶液中氟离子的浓度可从19下降到0.13 mg·L~(-1),吸附容量0.94 mg·g-1,除氟率达99%。  相似文献   

6.
为探索微波、过渡金属对过硫酸盐的活化效应,采用微波强化活性炭负载铁铜(Cu/Fe_3O_4/AC)催化过硫酸钠(SPS)处理邻苯二甲酸二丁酯(DBP)废水,研究了影响DBP降解效果的主要因素,并比较了不同工艺对DBP的降解效果。结果表明,微波强化Cu/Fe_3O_4/AC-SPS体系降解DBP的主要影响因素有反应温度、反应时间、SPS投加量以及初始pH。最佳反应条件下(温度为70℃、反应时间为25min、SPS∶DBP(摩尔比)为50∶1、初始pH为7.0),投加0.1g Cu/Fe_3O_4/AC,DBP去除率达到96.96%,微波、Cu/Fe_3O_4/AC和SPS发生协同效应。  相似文献   

7.
以赤泥为原料采用焙烧还原-重构法制备层状金属氢氧化物(LDH)和层状金属氧化物(LDO),比较了赤泥、焙烧赤泥、LDO和LDH对活性黄KE-4R染料(KE-4R)、活性艳蓝染料(RBB)的吸附效果;考察了吸附剂用量、吸附温度、吸附时间等因素对吸附效果的影响,并探讨了吸附机理。结果表明:LDH和LDO经XRD测定,证实其具有层状结构;4种吸附剂对KE-4R、RBB的吸附效果排序为:LDOLDH赤泥焙烧赤泥;在投加量0.3g温度30℃,吸附时间90 min时,LDO对50 mg·L~(-1)KE-4R的去除率达到91.1%;在投加量0.1g温度25℃,吸附时间60 min时,LDO对50 mg·L~(-1)RBB的去除率达到97.2%;LDO对KE-4R和RBB的吸附等温方程符合Langmuir型等温式。  相似文献   

8.
电镀污泥钠化焙烧过程,由于Al、Cr和Zn的氧化物易与Fe_2O_3反应生成铁酸盐及其他复杂含铁盐类,导致灰渣水浸过程其浸出率较低。在添加剂CaO作用下,采用FactSage软件模拟污泥焙烧过程金属的矿相转化规律,找到提高Cr、Al和Zn浸出率的方法。研究结果表明,污泥钠化焙烧过程,添加剂CaO易与Fe_2O_3反应生成2CaO·Fe_2O_3,阻止Fe_2O_3与Cr、Al和Zn的氧化物反应生成铁酸盐及其他复杂盐类,一定程度上提高了Cr、Al和Zn的浸出率。但高温下,Al_2O_3也易与Cr、Al和Zn的氧化物反应生成难溶性铝酸盐,所以浸出率提高幅度不大。可采用稀碱先脱除污泥中的铝,铝的浸出率达95%以上,脱铝渣再拌苏打和CaO焙烧,灰渣水浸脱铬率达95%以上。通过分析可知,污泥在焙烧之前脱铝和在焙烧过程铁转化成2CaO·Fe_2O_3,阻止了难溶性铝酸盐、铁酸盐以及其他复杂盐类的生成,同时Cr和Al得到分离,且灰渣中铜、镍和锌以游离氧化物和极少部分结合氧化物形式存在,有利于后续金属的浸出和分离。  相似文献   

9.
采用溶胶凝胶法制备TiO_2-SiO_2载体,浸渍法制备出V_2O_5-WO_3/TiO_2-SiO_2催化剂,利用BET、FESEM、XRD、TGA和激光拉曼对催化剂进行表征,研究催化剂的理化性质。以NH_3为还原剂,考察反应温度、SiO_2掺杂量、焙烧温度、空速和使用时间对SCR催化还原NO的性能影响。结果表明,V_2O_5-WO_3/TiO_2-SiO_2催化剂最佳反应温度在250~350℃。SiO_2掺杂能提高活性组分V_2O_5和WO_3在载体表面的分散性,制备出的催化剂具有更大的比表面积和更宽的温度区间,提高脱硝活性及稳定性。SiO_2掺杂量对催化剂性能影响较大,制备的催化剂中,TiO_2/SiO_2=2显示了最大催化活性,脱硝率均在60%以上,TiO_2/SiO_2=0.5制备的催化剂稳定性最差。焙烧温度对催化剂性能也有影响,焙烧温度在500和600℃时,最低脱硝率为58%和23%,最佳焙烧温度为400℃,脱硝率均在80%以上,具有优越的脱硝性能。实验结果还表明,空速对V_2O_5-WO_3/TiO_2-SiO_2催化剂的影响不大,在20 000 h~(-1)空速下催化剂的使用时间对脱硝率的影响也不大,48 h内能保持在99%左右,非常稳定。  相似文献   

10.
为了解决水体中Pb(Ⅱ)污染问题,利用SiO_2和半胱氨酸(Cys)对Fe_3O_4纳米粒子进行表面修饰,并用于水中Pb(Ⅱ)的去除研究。实验结果表明,Fe_3O_4@SiO_2@Cys的吸附效果明显优于另外两种未修饰Cys的磁性纳米材料(Fe_3O_4和Fe_3O_4@SiO_2)。当Fe_3O_4@SiO_2@Cys投加量为1.0g/L,pH=6.0,Pb(Ⅱ)初始质量浓度为100mg/L,吸附时间为30min时,水中Pb(Ⅱ)去除率可达到95%以上。在Cd(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)共存条件下,Fe_3O_4@SiO_2@Cys对Pb(Ⅱ)的吸附效果明显优于其他3种金属离子。经5次循环使用后,Fe_3O_4@SiO_2@Cys对Pb(Ⅱ)的去除率仍保持在80%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号