首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS   总被引:43,自引:0,他引:43  
Luo C  Shen Z  Li X 《Chemosphere》2005,59(1):1-11
Chemically enhanced phytoextraction has been proposed as an effective approach to removing heavy metals from contaminated soil through the use of high biomass plants. Using pot experiments, the effects of the application of EDTA, EDDS and citric acid on the uptake of Cu, Pb, Zn and Cd by corn (Zea mays L. cv. Nongda 108) and bean (Phaseolus vulgaris L. white bean) plants were studied. The results showed that EDDS was more effective than EDTA at increasing the concentration of Cu in corn and beans. The application of 5 mmol kg-1 soil EDDS to soil significantly increased concentrations of Cu in shoots, with maximum levels of 2060 and 5130 mg kg-1 DW in corn and beans, respectively, which were 45- and 135-fold higher than that in the corresponding control plants to which chelate had not been applied. Concentrations of Zn in shoots were also higher in the plants treated with EDDS than in those treated with EDTA. For Pb and Cd, EDDS was less effective than EDTA. The maximum Cu phytoextraction was found with the EDDS treatment. The application of EDTA and EDDS also significantly increased the shoot-to-root ratios of the concentrations of Cu, Pb, Zn and Cd in both plant species. The results of metal extraction with chelates showed that EDDS was more efficient at solubilizing Cu and Zn than EDTA, and that EDTA was better at solubilizing Pb and Cd than EDDS.  相似文献   

2.
Luo C  Shen Z  Li X  Baker AJ 《Chemosphere》2006,63(10):1773-1784
Chemically enhanced phytoextraction is achieved by the application of chelates to soils. Using pot experiments, the effect of the combined application of EDTA and EDDS on the uptake of Cu, Pb, Zn and Cd by Zea mays L. was studied. Among the tested application ratios of 1:1, 1:2, and 2:1 (EDTA/EDDS), 2:1 of EDTA:EDDS was the most efficient ratio for increasing the concentrations of Cu, Pb, Zn and Cd in the shoots. The combined application of 3.33 mmol kg(-1) soil of EDTA+1.67 mmol kg(-1) soil of EDDS produced 650 mg kg(-1) of Pb in the shoots, which was 2.4 and 5.9 times the concentration of Pb in the shoots treated with 5 mmol kg(-1) of EDTA and EDDS alone, respectively. The total phytoextraction of Pb reached 1710 microg kg(-1) soil, which was 2.1 and 6.1 times the total Pb from 5 mmol kg(-1) EDTA and EDDS alone, respectively. The combined application of EDTA and EDDS also significantly increased the translocation of Pb from the roots to the shoots. The mechanism of enhancing the phytoextraction of Pb by the combined application of EDTA+EDDS did not involve a change in the pH of the soil. The increase in the phytoextraction of Pb by the shoots of Z. mays L. was more pronounced than the increase of Pb in the soil solution with the combined application of EDTA and EDDS. It was thought that the major role of EDDS might be to increase the uptake and translocation of Pb from the roots to the shoots of plants.  相似文献   

3.
The potential of 18 different plants to be used in the chemically enhanced phytoextraction of Cu, Pb, Zn and Cd was assessed using pot experiments. Chrysanthemum coronarium L. was the species most sensitive to the application of EDTA, and had the highest enhancement of Cu and Pb concentrations in its shoots. Compared with EDTA, EDDS was more effective in enhancing the concentration of Cu in the shoots of Chrysanthemum coronarium L. and Zea mays L. grown on multi-metal contaminated soils. The EDTA-treated soil still had a significant ability to enhance the concentrations of Cu and Pb in the shoots of Zea mays L. six months after the chelant treatment. However, the EDDS-treated soil did not have any effect in enhancing the concentrations of metals in the shoots of Zea mays L. in the second crop test. The results may indicate that EDDS biodegrades more rapidly than EDTA in soil and is better in limiting potential metal leaching.  相似文献   

4.
Tandy S  Schulin R  Nowack B 《Chemosphere》2006,62(9):1454-1463
Phytoextraction is an environmentally friendly in situ technique for cleaning up metal contaminated land. Unfortunately, efficient metal uptake by remediation plants is often limited by low phytoavailability of the targeted metals. Chelant assisted phytoextraction has been proposed to improve the efficiency of phytoextraction. Phytoremediation involves several subsequent steps: transfer of metals from the bulk soil to the root surfaces, uptake into the roots and translocation to the shoots. Nutrient solution experiments address the latter two steps. In this context we investigated the influence of the biodegradable chelating agent SS-EDDS on uptake of essential (Cu and Zn) and non-essential (Pb) metals by sunflowers from nutrient solution. EDDS was detected in shoots and xylem sap for the first time, proving that it is taken up into the above ground biomass of plants. The essential metals Cu and Zn were decreased in shoots in the presence of EDDS whereas uptake of the non-essential Pb was enhanced. We suggest that in the presence of EDDS all three metals were taken up by the non-selective apoplastic pathway as the EDDS complexes, whereas in the absence of EDDS essential metal uptake was primarily selective along the symplastic pathway. This shows that synthetic chelating agents do not necessarily increase uptake of heavy metals, when soluble concentrations are equal in the presence and absence of chelates.  相似文献   

5.
Abstract

A greenhouse experiment was conducted under simulated field conditions using large‐capacity plastic pots, filled each one with 25 kg of air‐dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha‐1) of municipal solid waste (MSW) compost, and co‐composted municipal solid waste and sewage sludge (MSW‐SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW‐SS co‐compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA‐extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc‐EDTA‐extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA‐extractable and AAAc‐EDTA‐extractable Zn contents in soil versus the control, except for the lower rate of MSW‐SS co‐compost. The values of DTPA‐extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc‐EDTA‐extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc‐EDTA‐extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW‐SS co‐compost.  相似文献   

6.
为了探索污泥堆肥中重金属在土壤一植物系统中的积累与转移特性,通过温室盆栽实验,分析了污泥堆肥对草坪草高羊茅、黑麦草和白三叶生物量积累的情况,研究了污泥堆肥中Zn和Cu在植物和土壤中的分布特征。结果表明,污泥堆肥施用可以有效促进3种草坪草的积累生物量,在0~6kg/m2的污泥堆肥施用量范围内,草坪草的生物量积累随着施用量的增加而提高。土壤中Zn和Cu的含量随污泥堆肥施加量的增加而增大,85%以上的Zn和Cu残留在土壤中。污泥堆肥中的Zn和Cu均可以被植物吸收,随着污泥堆肥施用量的增加,草坪草对Zn和Cu的吸收量增大,但当污泥堆肥施用量超过一定阈值时,草坪草吸收zn和cu不再增加,甚至减少;对于不同的草坪草,这一阈值有所不同。植物对zn和cu的吸收量只占土壤中zn和cu减少量的5%左右。根据生物富集系数(BCF)的计算结果推测,污泥堆肥的施用对土壤环境的影响大于对植物体内累积zn和Cu的影响。  相似文献   

7.
The potential of nine different species to grow in the presence of metals (As, Cd, Cu, Pb and Zn) and to accumulate them in the shoots was assessed for each metal separately by germination and root length tests, and successively by hydroponic experiments. Of the nine species tested, Brassica carinata was the species that accumulated the highest amounts of metals in shoots without suffering a significant biomass reduction. To further evaluate the potential of B. carinata for chelant-enhanced phytoextraction of a natural, multiply metal-polluted soil (As, Cd, Cu, Pb and Zn), both hydroponic and pot experiments were carried out with nitrilotriacetic acid (NTA) or (S,S)-ethylenediamine disuccinic acid (EDDS) as complexing agents. The hydroponic study with solutions containing the five metals together showed that accumulation of Cd, Cu, Pb and Zn in shoots was higher following EDDS addition compared to NTA. EDDS was more effective than NTA in desorbing Cu, Pb and Zn from the soil, whereas As and Cd were poorly extracted. B. carinata plants were grown for 4 weeks in the multiply metal-contaminated soil and then the soil was amended with 5 mmol kg(-1) NTA or EDDS. All plants were harvested 1 week after amendment. In comparison to NTA, EDDS was more effective in enhancing the concentrations of Cu, Pb and Zn in B. carinata shoots (2- to 4-fold increase compared to the control). One week after chelant addition, the DTPA-extractable metal concentrations in the polluted soil were lower in the EDDS treatment in comparison with the NTA amendment. Even though B. carinata showed a reduced growth and a relatively low metal uptake, it demonstrated the ability to survive and tolerate the presence of more metals simultaneously.  相似文献   

8.
Meers E  Ruttens A  Hopgood MJ  Samson D  Tack FM 《Chemosphere》2005,58(8):1011-1022
Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals or radionuclides, but is generally conceived as too slow working. Enhancing the accumulation of trace pollutants in harvestable plant tissues is a prerequisite for the technology to be practically applicable. The chelating aminopolycarboxylic acid, ethylene diamine tetraacetate (EDTA), has been found to enhance shoot accumulation of heavy metals. However, the use of EDTA in phytoextraction may not be suitable due to its high environmental persistence, which may lead to groundwater contamination. This paper aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposes. A laboratory experiment was conducted to examine mobilisation of Cd, Cu, Cr, Ni, Pb and Zn into the soil solution upon application of EDTA or EDDS. The longevity of the induced mobilisation was monitored for a period of 40 days after application. Estimated effect half lives ranged between 3.8 and 7.5 days for EDDS, depending on the applied dose. The minimum observed effect half life of EDTA was 36 days, while for the highest applied dose no decrease was observed throughout the 40 day period of the mobilisation experiment. Performance of EDTA and EDDS for phytoextraction was evaluated by application to Helianthus annuus. Two other potential chelators, known for their biodegradability in comparison to EDTA, were tested in the plant experiment: nitrilo acetic acid (NTA) and citric acid. Uptake of heavy metals was higher in EDDS-treated pots than in EDTA-treated pots. The effects were still considered insufficiently high to consider efficient remediation. This may be partly due to the choice of timing for application of the soil amendment. Fixing the time of application at an earlier point before harvest may yield better results. NTA and citric acid induced no significant effects on heavy metal uptake.  相似文献   

9.
Wu LH  Luo YM  Christie P  Wong MH 《Chemosphere》2003,50(6):819-822
A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.  相似文献   

10.
In a pot experiment, pig manure (PM) and chicken manure (CM) were applied to an acidic soil at application rates of 2%, 4% and 8% (W/W) to evaluate their effects on the growth, Cu and Zn uptake and transfer of five cultivars of pakchoi (Brassica chinesis L.). The results showed that alkaline manures significantly increased the biomass of pakchois, and also pH and electrical conductivity of the soil. Both 0.01 M CaCl2 and 1.0 M NH4NO3 salt solutions predict the Zn transfer from soil to pakchois well, but not for Cu. For the cultivar Siyueman, the transfer factors of Cu (or Zn) in the PM treatments were higher than that in the CM treatments. In our experiment the Cu and Zn concentrations in pakchois did not exceed the Chinese Food Hygiene Standard, but more attention should be paid to heavy metals risk on pakchois at lower soil pH and salt impairment by manures application.  相似文献   

11.
In a pot experiment, pig manure (PM) and chicken manure (CM) were applied to an acidic soil at application rates of 2%, 4% and 8% (W/W) to evaluate their effects on the growth, Cu and Zn uptake and transfer of five cultivars of pakchoi (Brassica chinesis L.). The results showed that alkaline manures significantly increased the biomass of pakchois, and also pH and electrical conductivity of the soil. Both 0.01 M CaCl2 and 1.0 M NH4NO3 salt solutions predict the Zn transfer from soil to pakchois well, but not for Cu. For the cultivar Siyueman, the transfer factors of Cu (or Zn) in the PM treatments were higher than that in the CM treatments. In our experiment the Cu and Zn concentrations in pakchois did not exceed the Chinese Food Hygiene Standard, but more attention should be paid to heavy metals risk on pakchois at lower soil pH and salt impairment by manures application.  相似文献   

12.
The effect of soil pH value on concentrations of Ni, Cu and Zn in ryegrass grown on two sludge-treated soils was examined under field conditions and the maximum permissible soil limit values for these elements were determined which prevent phytotoxicity in crops where sewage sludge is applied to agricultural soils with pH <6.0. Concentrations of all the elements in ryegrass decreased as simple linear functions of increasing soil pH and this response was consistent across the range of pH values measured (pH 4.2-7.0). The response of individual elements tended to differ though, with Cu being less sensitive to changing pH conditions compared with Zn and Ni which responded in a similar manner. The yield of ryegrass also increased with increasing soil pH value probably due to the effects on Zn uptake as the crop content of Zn exceeded known upper critical tissue concentrations for this element at both sites. The proportional change in metal content of ryegrass at pH 5.0, 5.5 and 7.0 from tissue concentrations at pH 6.0 was calculated to determine the permissible soil concentration values on the basis of current maximum limits set by the Sludge Regulations in the UK for sludge-treated agricultural land at pH 6.0-7.0. The estimated permissible concentrations of Ni and Zn in soil corresponded with the regulatory values at the low pH ranges, but were substantially above the current soil limits at pH 7.0 indicating larger quantities of these elements could be safely applied under alkaline soil conditions. The estimated soil limits for Cu implied that the current Regulations were highly precautionary for this element.  相似文献   

13.
This study investigated the influence of dissolved and soil organic matter on metal extraction from an artificially contaminated soil. With high concentration of DOM, the extraction of Cu, Zn and Pb was enhanced by forming additional metal-EDDS complexes under EDDS deficiency. However, the enhancement of metal extraction under EDDS excess was probably due to the soil structure being disrupted owing to humic acid enhanced Al and Fe dissolution, which induced more metals dissolving from the soils. Fulvic acid was found to enhance metal extraction to a greater extent compared with humic acid because of its high content of the carboxylic functional group. Cu extraction from the soil with high organic matter content using EDDS was the lowest due to the high binding affinity of Cu to SOM, whereas Zn extraction became the highest because of a preference for EDDS to extract Zn due to the high stability constant of ZnEDDS.  相似文献   

14.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

15.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

16.
Chelator induced phytoextraction and in situ soil washing of Cu   总被引:9,自引:0,他引:9  
In a soil column experiment, we investigated the effect of 5 mmol kg(-1) soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg(-1) Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8 +/-1.3 mg kg(-1) Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg(-1) exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53 +/- 0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates.  相似文献   

17.
Phytoextraction has revealed great potential, however it is limited by the fact that plants need time and nutrient supply and have a limited metal uptake capacity. Although the use of synthetic chelators, such as EDTA, enhances heavy metal extraction, it also produces the negative side effects of high phytotoxicity, as well as leaching of essential metals. The aim of this research was to investigate the application of wool, in mobilising metals and in improving the phytoextraction of metals-contaminated soil. We performed column experiments with 14 d and 7 d partially hydrolysed wool as chelating agent on a silty-loamy sand agricultural soil. In the column experiment the 14 d wool hydrolysate mobilised 68% of Cu in soil, whereas in the case of Cd it mobilised 5.5%. The model plant selected for the phytoextraction experiments was tobacco (Nicotiana tabacum). The plant uptake of Cd and Cu, assisted by the application of 6.6 g kg(-1) wool hydrolysate was increased by 30% in comparison to the control plants. The application of 13.3 g kg(-1) wool hydrolysate enhanced the Cu uptake by up to 850%. Moreover, high leaching probability frequently observed when applying chelating agents, such as EDTA or ethylene diamine disuccinate (EDDS), were not detected. The use of hydrolysed wool therefore merits further investigation.  相似文献   

18.
A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.  相似文献   

19.
This paper aims to investigate the degradation and speciation of EDDS-complexes (SS-ethylenediaminedisuccinic acid) in soil following soil washing. The changes in soil solution metal and EDDS concentrations were investigated for three polluted soils. EDDS was degraded after a lag phase of 7-11 days with a half-life of 4.18-5.60 days. No influence of EDDS-speciation on the reaction was observed. The decrease in EDDS resulted in a corresponding decrease in solubilized metals. Changes in EDDS speciation can be related to (1) initial composition of the soil, (2) temporarily anoxic conditions in the soil slurry after soil washing, (3) exchange of EDDS complexes with Cu even in soils without elevated Cu and (4) formation of NiEDDS. Dissolved organic matter is important for metal speciation at low EDDS concentrations. Our results show that even in polluted soils EDDS is degraded from a level of several hundred micromoles to below 1 microM within 50 days.  相似文献   

20.
Zhou DM  Hao XZ  Wang YJ  Dong YH  Cang L 《Chemosphere》2005,59(2):167-175
Environmental safety of agricultural utilization of livestock and poultry manures from intensive farming is attracting great attention because the manures often contain high concentrations of heavy metals and organic pollutants. Pot experiments, in which a pig manure (PM), a chicken manure (CM) and a commercial organic manure (OM) with different concentrations of Cu and Zn to simulate soil metal accumulation by manure application for different times were utilized in a garden soil at a rate of 2% (W/W), were conducted to study the effect of application of these livestock and poultry manures on growth of radish (Raphanus sativus L.) and pakchoi (Brassica chinensis L.) as well as their Cu and Zn uptake. The results exhibit that the manures except the PM improved the growth of radish and pakchoi. The difference of biomass among the same manure treatments containing different concentrations of Cu and Zn, however, was insignificant. In addition, application of the livestock and poultry manures significantly increased soil pHs and electric conductivities (EC) compared with the control, which is ascribed that these manures had high pH and contained large amounts of inorganic ions. The available soil Zn concentrations in the PM were higher than that in the CM and OM, and the extractable soil Cu concentrations in the three manures were almost the same after radish growth in the garden soil but were different after pakchoi growth. Zinc and Cu concentrations in the radish and pakchoi tissues increased when the soil Zn and Cu concentrations increased by manures application, but were still within a safe value. An except is the treatment PM4 in which the Zn concentration of the above-ground part of radish was 28.7 mg kg-1, exceeding the Chinese Food Hygiene Standard of 20 mg kg-1 based on fresh weight. Good correlation was obtained between the extractable soil Zn (or Cu) concentrations extracted by 1.0 mol l-1 NH4NO3 and the Zn (or Cu) concentrations in radish and pakchoi tissues, which was expected to be effective in forecasting Cu and Zn availability to radish and pakchoi in manure agronomic utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号