首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Composting can be a source of N2O andCH4 production. In this investigation, differentcompost heaps of organic household waste weremonitored with the focus on potential formation ofCH4 and N2O in the heaps and emission ofthese gases from the heaps. The studied compost heapshad different compost ages, turning intervals andcompost sizes. The analysed compost gases containedbetween 1–3421 L of N2O-N L-1 and 0–470 mL of CH4 L-1. The emission rates ofN2O and CH4 from the compost heaps werebetween 1–1464 mg N2O m-2 day-1 and0–119 000 mg CH4 m-2 day-1. These verylarge differences in compost gas composition andemission indicate the importance of compostmanagement. The results also give an understanding ofwhere in the composting process an increasing emissionof N2O and CH4 can occur.  相似文献   

2.
The NO, NO2 and N2O emission was measured, upon application of nitrate, ammonium and both, to four Belgian soils with different characteristics. The addition of NH 4 + caused higher NO and N2O emissions than the addition of no nitrogen, or the addition of NO 3 . In contrast to the two soils with a pH of approximately 8 the two soils with a pH around 6 showed a considerable delay in production of both NO and N2O upon the application of the ammonium, probably due to the lag-period of nitrification. The soils with a pH of 8 gave higher emissions on the application of NH 4 + than the soils with a pH of 6. The emission of NO2 was found to be considerably lower than the NO emission from the soils. The NO/NO2 ratio varied between 5–25 at considerable NO emissions (>50 nmol kg–1). In the controls of soil 1 and soil 2, which showed very low NO emissions ratios of <1 were observed. The N2O/NO ratios varied between 5–20 when NO emissions were considerable (>50 nmol kg–1). Soil 3 and 4 gave lower N2O/NO ratios than soil 1 and 2. In the controls of soil 1 and soil 2, at low NO emissions, N2O/NO ratios of >300 were observed. Soil 3 and 4 gave higher NO/NO2 and lower N2O/NO ratios than soil 1 and 2.  相似文献   

3.
Nitric oxide (NO) and nitrous oxide (N2O) fluxes were measured from agricultural, forest and moorland environments, using chamber techniques. Maximum emissions of NO and N2O were measured from the agricultural soils shortly after fertiliser application (7 ng NO-N m–2 s–1 and 91 ng N2O-N m–2 s–1). For the non-agricultural soils the NO flux ranged from –0.3 to 0.5 ng NO-N m–2 s–1 and the N2O flux ranged from 1 to 2.7 ng N2O-N m–2 s–1. Emissions, however, were increased 2 to 7 fold when N deposition (uplands) and N fixation (alder plantations) contributed to the pool of soil available N. The best predictors of the NO emission were soil NO 3 and soil temperature, accounting for 60% of the variability observed. The prediction of N2O was less successful. Only 30% of the variability could be explained by the soil NO 3 and the soil moisture content, soil temperature did not have a significant effect on the N2O emission.  相似文献   

4.
Atmospheric chemistry and climate modellers require gridded global emissions data as input into their models. To meet this urgent need a global emissions source database called EDGAR is being developed by TNO and RIVM to estimate for 1990, on a regional and on a grid basis, annual emissions of greenhouse gases (CO2, CH4, N2O, CO, NOx, non-methane VOC, SOx), of NH3, and of ozone depleting compounds (halocarbons) from all known sources. The aim is to establish at due levels of spatial, temporal and source aggregation the emissions from both anthropogenic and biogenic sources: a complete set of data required to estimate the total source strength of the various gases with a 1×1 ° resolution (altitude resolution of 1 km) and a temporal resolution of a month, supplemented by diurnal variation, as agreed upon in the Global Emissions Inventory Activity (GEIA) of the International Atmospheric Chemistry Programme (IGAC). In this way EDGAR will meet the requirements of present and future developments in the field of atmospheric modelling. The data comprise demographic data, social and economic factors, land use distributions and emission factors (with due emphasis on the uncertainty). As understanding in this field is still changing, due attention is paid to flexibility regarding the disaggregation of sources, spatial and temporal resolution and species. The objective and methodology chosen for the construction of the database and the structural design of the database system are presented, as well as the type and sources of data and the approach used for data collection. As an example, the construction of the N2O inventory is discussed.  相似文献   

5.
Grazed grassland which received 295 kg ha–1 N-fertilizer (NH4NO3), split-applied, was used to measure nitrous oxide emission. The closed box method was used. At the same time, also soil cores were taken for incubation in the presence of acetylene. During 280 days in 1992, a total emission of 8.4 kg N2O-N ha–1 was found. This was close to 50 % of the total denitrification, which was 18.7 kg (N2O+N2)-N ha–1 over 280 days. A variability study on N2O emission was carried out on a surface of 1, 100 and 10,000 m2, respectively. This study confirmed the lognormal distribution of data with variation coefficients of 20 to 25%. It was also found that the effect of application of 200 kg KNO3-N on N2O emission was limited to 2 weeks upon fertilization. It more than doubled the emission rate during this period.  相似文献   

6.
Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 103 ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain.  相似文献   

7.
Atmospheric samples collected during rice straw burning at four different locations in Viet-Nam during the dry (March 1992, February 1993) and wet season (August 1992) were analysed for CO2, CO, and CH4. The emission ratios relative to CO2 for CO and CH4 for rice straw burning during the dry season were comparable to those observed on samples collected during burning of savanna in Africa or forest in the USA. During the wet season, however the emission ratios for CO and CH4 relative to CO2 were 3 to 10 times higher. With these emission ratios and estimates of rice production from Southeastern Asia, we estimated that burning of rice straw emits annually about 2.2 Tmol of CO (26 TgC) and 0.2 Tmol of CH4 (2.4 TgC) to the atmosphere. Taking into account these new results, CO and CH4 fluxes from biomass burning could be reevaluated by 5–21% and 5–24%, respectively, in respect with previous estimates of these gas emissions from all biomass burning activities.  相似文献   

8.
This study quantified spatiotemporal patterns of CH4 and N2O emissions from livestock and poultry production in Turkey between 1961 and 2007. CH4(enteric) (from enteric fermentation), CH4(manure) (from manure management), and N2O(AWM) (from animal waste management) emissions in Turkey were estimated at 1,164, 216, and 55 Gg in 1961 and decreased to 844, 187, and 39 Gg in 2007, contributing a share of roughly 2% to the global livestock-related CH4 emissions and %1.5 to the global N2O(AWM) emissions, respectively. Total CO2-eq emissions were estimated at 50.7 Tg in 1961 and declined from a maximum value of 60.7 Tg in 1982 to a minimum value of 34.5 Tg in 2003, with a mean emission rate of 48 Tg year???1 due to a significant reduction in the number of ruminant livestock. The highest mean share of emissions belonged to West Black Sea (14% and 16%) for CH4(enteric) and CH4(manure) and to North East Anatolia (12% and %13) for N2O(AWM) and total CO2-eq emissions, respectively. The highest emission density was 1.7 Mg km???2 year???1 for CH4(enteric), 0.3 Mg km???2 year???1 for CH4(manure), and 0.07 Mg km???2 year???1 for the total CO2-eq emissions in the West and North East Anatolia regions and 0.09 Mg km???2 year???1 for N2O(AWM) in the East Marmara region. Temporal and spatial variations in CH4(enteric), CH4(manure), and N2O(AWM) emissions in Turkey were estimated using regression models and ordinary kriging at a 500-m resolution, respectively.  相似文献   

9.
Measurements of methane emission rates and concentrations in the soil were made during four growing seasons at the International Rice Research Institute in the Philippines, on plots receiving different levels of organic input. Fluxes were measured using the automated closed chambers system (total emission) and small chambers installed between plants (water surface flux). Concentrations of methane in the soil were measured by collecting soil cores including the gas phase (soil-entrapped methane) and by sampling soil solution in situ (dissolved methane). There was much variability between seasons, but total fluxes from plots receiving high organic inputs (16–24 g CH4 m–2) always exceeded those from the low input plots (3–9 g CH4 m–2). The fraction of the total emission emerging from the surface water (presumably dominated by ebullition) was greater during the first part of the season, and greater from the high organic input plots (35–62%) than from the low input plots (15–23%). Concentrations of dissolved and entrapped methane in the low organic input plots increased gradually throughout the season; in the high input plots there was an early-season peak which was also seen in emissions. On both treatments, periods of high methane concentrations in the soil coincided with high rates of water surface flux whereas low concentrations of methane were generally associated with low flux rates.  相似文献   

10.
Accurate emission inventory (EI) is the foremost requirement for air quality management. Specifically, air quality modeling requires EI with adequate spatial and temporal distributions. The development of such EI is always challenging, especially for sporadic emission sources such as biomass open burning. The country of Thailand produces a large amount of various crops annually, of which rough (unmilled) rice alone accounted for over 30 million tonnes in 2007. The crop residues are normally burned in the field that generates large emissions of air pollutants and climate forcers. We present here an attempt at a multipollutant EI for crop residue field burning in Thailand. Available country-specific and regional primary data were thoroughly scrutinized to select the most realistic values for the best, low and high emission estimates. In the base year of 2007, the best emission estimates in Gigagrams were as follows: particulate matter as PM2.5, 128; particulate matter as PM10, 143; sulfur dioxide (SO2), 4; carbon dioxide (CO2), 21,400; carbon monoxide (CO), 1,453; oxides of nitrogen (NOx), 42; ammonia (NH3), 59; methane (CH4), 132; non-methane volatile organic compounds (NMVOC), 108; elemental carbon (EC), 10; and organic carbon (OC), 54. Rice straw burning was by far the largest contributor to the total emissions, especially during the dry season and in the central part of the country. Only a limited number of EIs for crop residue open burning were reported for Thailand but with significant discrepancies. Our best estimates were comparable but generally higher than other studies. Analysis for emission uncertainty, taking into account possible variations in activity data and emission factors, shows considerable gaps between low and high estimates. The difference between the low and high EI estimates for particulate matter and for particulate EC and OC varied between −80% and +80% while those for CO2 and CO varied between −60% and +230%. Further, the crop production data of Thailand were used as a proxy to disaggregate the emissions to obtain spatial (76 provinces) and temporal (monthly) distribution. The provincial emissions were also disaggregated on a 0.1° × 0.1° grid net and to hourly profiles that can be directly used for dispersion modeling.  相似文献   

11.
The first greenhouse gas (GHG) emission estimates for Senegal, for the year 1991, were produced according to the draft IPCC/OECD guidelines for national inventories of GHGs. Despite certain discrepancies, nonavailability of data, the quality of some of the data collected, and the methodology, the estimates provide a provisional basis for Senegal to fulfill its obligations under the UN Framework Convention on Climate Change. This inventory reveals that GHG emissions in Senegal, like those in many developing countries, can mainly be attributed to the use of biomass for energy, land-use change and forestry, and savanna burning. Taking into account the direct global warming potential of the main GHGs (CO2, CH4, and N2O), Senegal's emissions are estimated at 17.6 Tg ECO2. The major gases emitted are CO2 (61% of GHG emissions), followed by CH4 (35%) and N2O (4%). Energy accounts for 45% of total emissions (12% from fossil energy and 33% from traditional biomass energy); land-use change and forests, 18%; agriculture, 24%; waste, 12%; and industry, 1%.  相似文献   

12.
Present and future annual methane flux estimates out of landfills, rice paddies and natural wetlands, as well as the sorption capacity of aerobic soils for atmospheric methane, are assessed. The controlling factors and uncertainties with regard to soil methanogenesis and methanotrophy are also briefly discussed.The actual methane emission rate out of landfills is estimated at about 40 Tg yr–1. Changes in waste generation, waste disposal and landfill management could have important consequences on future methane emissions from waste dumps. If all mitigating options can be achieved towards the year 2015, the CH4 emission rate could be reduced to 13 Tg yr–1. Otherwise, the emission rate from landfills could increase to 63 Tg yr–1 by the year 2025. Methane emission from rice paddies is estimated at 60 Tg yr–1. The predicted increase of rice production between the years 1990 and 2025 could cause an increase of the CH4 emission rate to 78 Tg yr–1 by the year 2025. When mitigating options are taken, the emission rate could be limited to 56 Tg yr–1. The methane emission rate from natural wetlands is about 110 Tg yr–1. Because changes in the expanse of natural wetland area are difficult to assess, it is assumed that methane emission from natural wetlands would remain constant during the next 100 years. Because of uncertainties with regard to large potential soil sink areas (e.g. savanna, tundra and desert), the global sorption capacity of aerobic soils for atmospheric methane is not completely clear. The actual estimate is 30 Tg yr–1.In general, the net contribution of soils and landfills to atmospheric methane is estimated at 180 Tg yr–1 (210 Tg yr–1 emission, 30 Tg yr–1 sorption). This is 36% of the global annual methane flux (500 Tg yr–1).  相似文献   

13.
The Northeastern semi-arid Brazilian region is experiencing rapid social and economic development based on improving water management and even in areas of low human occupation, anthropogenic emissions of N and P surpass natural emissions in at least one order of magnitude and these additional loads can alter the water quality of the receiving estuaries. This study estimates, using an emission factor approach, the annual emissions of N and P from natural processes and anthropogenic sources for estuaries along the Ceará State, NE Brazil. Emission factors from natural sources are one to two orders of magnitude lower than those for anthropogenic sources. Among the anthropogenic activities, the aquaculture is responsible for most N emission (0.52 t km−2 year−1) followed by waste water and husbandry. For P, the largest average emission factors are from husbandry (0.30 t km−2 year−1), waste water and agriculture.  相似文献   

14.
Nitrous oxide (N2O) accounts for 5%of the total enhanced greenhouse effect and responsiblefor the destruction of the stratospheric ozone. The rice-wheat cropping system occupying 26 million ha ofproductive land in Asia could be a major source ofN2O as most of the fertilizer N in this region isconsumed by this system. Emission of N2O asinfluenced by application of urea, urea plus farm yardmanure (FYM), and urea plus dicyandiamide (DCD), anitrification inhibitor, was studied in rice-wheatsystems of Indo-Gangetic plains of India. Total emissionof N2O-N from the rice-wheat systems varied between654 g ha-1 in unfertilized plots and 1570 g ha-1 in urea fertilized plots. Application of FYM and DCDreduced emission of N2O-N in rice. The magnitude ofreduction was higher with DCD. In wheat also N2O-Nemission was reduced by DCD. FYM applied in rice had noresidual effect on N2O-N emission in wheat. In riceintermittent wetting and drying condition of soilresulted in higher N2O-N emission than that ofsaturated soil condition. Treatments with 5 irrigationsgave higher emissions in wheat than those with 3irrigations. In rice-wheat system, typical of a farmer'sfield in Indo-Gangetic plains, where 240 kg N isgenerally applied through urea, N2O-N emission is1570 g ha-1 (0.38% of applied N) and application ofFYM and DCD reduced it to 1415 and 1096 g ha-1,respectively.  相似文献   

15.
An experiment was conducted to assess the role of different concentrations of dicyandiamide (DCD), a potent nitrification inhibitor, on temporal changes in nitrous oxide emission from sandy loam agricultural soil. It was found that with increasing concentration of DCD i.e. from 6 to 12% of nitrogen applied in the form of urea, there was a decrease in the both average and peak N2O emissions. However, from 14% DCD treated soil, there was a non-significant alteration in the N2O emission. Maximum average N2O efflux of 217.55 μg m−2 h−1 was noted from control plots. As compared to control, there was an attenuation of 50, 58, 65, and 91% average N2O efflux from 6, 8, 10 and 12% DCD applied pots, respectively, whereas, there was a negative average of N2O efflux from the soil with 14% DCD treatment. The soil N content also showed a significant correlation with N2O emission. Therefore, 12% DCD treatment has been found to be the best with regard to attenuation of nitrous oxide from sandy loam agricultural soils.  相似文献   

16.
The purpose of the study was to identify and quantify anthropogenic sources and sinks of greenhouse gases from forestry, land-use changes and agriculture in Tanzania. The 1990 inventory revealed that, in the land-use sector, methane (CH4) and carbon dioxide (CO2) are the primary gases emitted. Enteric fermentation in livestock production systems is the largest source of CH4. Although deforestation results in greenhouse gas emissions, the managed forests of Tanzania are a major CO2 sink.  相似文献   

17.
Infrared spectrometry is a versatile basis to analyse greenhouse gases in the atmosphere. A multicomponent air pollution software (MAPS) was developed for retrieval of gas concentrations from radiation emission as well as absorption measurements. Concentrations of CO, CH4, N2O, and H2O as well as CO2, NO, NO2, NH3, SO2, HCl, HCHO, and the temperature of warm gases are determined on-line. The analyses of greenhouse gases in gaseous emission sources and in ambient air are performed by a mobile remote sensing system using the double-pendulum interferometer K300 of the Munich company Kayser-Threde. Passive radiation measurements are performed to retrieve CO, N2O, and H2O as well as CO2, NO, SO2, and HCl concentrations in smoke stack effluents of thermal power plants and municipal incinerators and CO and H2O as well as CO2 and NO in exhausts of aircraft engines. Open-path radiation measurements are used to determine greenhouse gas concentrations at different ambient air conditions and greenhouse gas emission rates of diffusive sources as garbage deposits, open coal mining, stock farming together with additional compounds (e.g. NH3), and from road traffic together with HCHO. Some results of measurements are shown. A future task is the verification of emission cadastres by these inspection measurements.  相似文献   

18.
19.
Ground-level concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over three seasons, i.e., post-monsoon (September–October), winter (January–February), and summer (May–June) for 1 year during 2013–2014 in Nagpur City in India. The selected gases had moderate to high variation both spatially (residential, commercial, traffic intersections, residential cum commercial sites) and temporally (at 7:00, 13:00, 18:00, and 23:00 hours in all three seasons). Concentrations of gases were randomly distributed diurnally over city in all seasons, and there was no specific increasing or decreasing trend with time in a day. Average CO2 and N2O concentrations in winter were higher over post-monsoon and summer while CH4 had highest average concentration in summer. Observed concentrations of CO2 were predominantly above global average of 400 ppmv while N2O and CH4 concentrations frequently dropped down below global average of 327 ppbv and 1.8 ppmv, respectively. Two-tailed Student’s t test indicated that post-monsoon CO2 concentrations were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). CH4 concentrations in all seasons were statistically at par to each other. In case of N2O, concentrations in post-monsoon were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). Average ground-level concentrations of the gases calculated for three seasons together were higher in commercial areas. Environmental management priorities vis a vis greenhouse gas emissions in the city are also discussed.  相似文献   

20.
Sulphur dioxide and PM10 levels are investigated in Erzurum during the periods of 1990–2000 heating season to assess air pollution level. For that reason, emissions of sulphur dioxide and particulate matter were calculated by using consumption of fuels and Turkish emission factors. These emission values were evaluated together with air pollution levels, which were measured at six stations in Erzurum atmosphere during 1990–2000 winter periods. Results reveal that in 1990–1994 heating period, there is an increasing trend in the emissions and air pollution levels over Erzurum, and the air quality limits were not met. The daily 24 h limit (short-term limit) was exceeded 127 days in 1992–1993 winter period. The reason for this increase was found to be the switching to use of low-quality fossil fuels instead of cleaner ones. Results also indicated that there was a considerable decrease in emissions of air pollutants and air pollution levels after 1995. This can be explained by the consumption of more high-quality fossil fuels. The correlation coefficient of SO2 with PM10 is obtained as r2 = 0.85, which is a high value supporting the idea that both pollutants are emitted from the same source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号