首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goal, Scope and Background The retention of lead by a Mexican, clinoptilolite-rich tuff from Oaxaca (Mexico) at different pH values was evaluated and the lead sorption mechanisms on the zeolitic material in this work were discussed. Methods Isotherms were determined using lead nitrate solutions (initial pH values between 2 and 5) at 303 K. After the equilibrium was reached, the content of lead in the liquid phases was determined by atomic absorption spectrometry. The elemental composition of the clinoptilolite-rich tuff before and after the lead sorption process was evaluated by electron microscopy. Results The maximum ion exchange capacity of the Mexican, clinoptilolite-rich tuff for lead was 1.4 meq/g at pH 3, considering an ion exchange mechanism in the absence of any precipitated or hydrolyzed lead species in the sorption process or any change in the zeolite network. Langmuir and Freundlich isotherms were also considered in this work for comparison purposes. Discussion It is important to consider the nature of the sorption processes before choosing a model to describe the interaction between the metal ions and the sorbent. Conclusions The chemical lead speciation, the pH, as well as the characteristics of the clinoptilolite-rich tuff are important factors to be considered on the lead sorption process by natural zeolites. The chemical species involved in that process are Na+ from the zeolite and Pb2+ from the aqueous solution at pH 2 and 3, so that the ion exchange mechanism explains the lead sorption processes by the clinoptilolite-rich tuff through the ion exchange isotherms. The sodium, Mexican, clinoptilolite-rich tuff is a potential adsorbent for lead from aqueous solutions. Recommendations and Perspectives The natural zeolite-rich tuffs are very important as ion exchangers for the treatment of polluted water due to their sorption properties and low cost. The sorption behavior of each natural material depends on their composition. Mexican, clinoptilolite-rich tuff from Oaxaca (Mexico) could be used for the treatment of waste water contaminated with lead. It would be important to propose this material as an alternative as waste water treatment, because it shows good selectivity for the removal of heavy metals from water.  相似文献   

2.
Effective disposal of pumpkin husk (PH) as a redundant waste is a significant work for environmental protection and full utilization of resource. Predictive modeling of sorption of Lanaset Red (LR) G on PH was investigated in a batch system as functions of particle size, adsorbent dose, pH, temperature, and initial dye concentration. Fourier transform infrared spectroscopy attenuated total reflectance spectra of PH powders before and after the sorption of LR G were determined. Sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, initial dye concentration, and contact time. Amine and amide groups of PH had significant effect on the sorption process. The pHzpc of PH was found as 6.4. Sorption process was very fast initially and reached equilibrium within 60 min. Dynamic behavior of sorption was well represented by logistic and Avrami models. The sorption of LR G on PH was excellently described by Langmuir model, indicating a homogeneous phenomenon. Monolayer sorption capacity decreased from 440.78 to 436.28 mg g?1 with increasing temperature. Activation energy, thermodynamic, and desorption studies showed that this process was physical character, exothermic, and spontaneous. This study confirmed that PH as an effective and low-cost adsorbent had a great potential for the removal of LR G as an alternative eco-friendly process.  相似文献   

3.
Batch sorption experiments were carried out for the removal of cationic dyes (methylene blue and malachite green) from their aqueous solutions using sorbent made from fly ash-a waste material. Effects of various experimental parameters: initial dye concentration, contact time, pH, adsorbent dosage, solution temperature, surfactant addition and ionic strength on the fly ash sorption of dyes were evaluated. The isothermal data for sorption followed the Langmuir model. The maximum sorption capacity obtained for methylene blue and malachite green was 36.05 mg/g and 40.65 mg/g, respectively. Kinetic studies indicate that sorption on fly ash follows the pseudo-second order kinetics. Present research suggests that fly ash could be an appropriate adsorbent for the removal of basic dyes from aqueous solutions.  相似文献   

4.
Carbonised beet pulp (BPC) produced from agricultural solid waste by-product in sugar industry was used as adsorbent for the removal of Remazol Turquoise Blue-G 133 (RTB-G 133) dye in this study. The kinetics and equilibrium of sorption process were investigated with respect to pH, temperature and initial dye concentration. Adsorption studies with real textile wastewater were also performed. The results showed that adsorption was a strongly pH-dependent process, and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 47.0 mg g?1at the temperature of 25 °C at this pH value. The Freundlich and Langmuir adsorption models were used for describing the adsorption equilibrium data of the dye, and isotherm constants were evaluated depending on sorption temperature. Equilibrium data of RTB-G 133 sorption fitted very well to the Freundlich isotherm. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.  相似文献   

5.
A waste sludge produced from a wine-processing wastewater treatment process was used as an adsorbent to removal of heavy metal-lead(II) from aqueous solution. Results of kinetic experiments demonstrated that the adsorption was effective and rapid. Four different kinds of adsorption kinetic models (i.e., pseudo-first-order, pseudo-second-order, and two intra-particular mass diffusion models) were used to investigate the adsorption mechanisms. A normalized standard deviation was used to find the best adsorption kinetic model for the removal of lead(ll) by the sludge. The comparison shows that the kinetic adsorption data can be well-described by the pseudo-second-order adsorption model and that sorption might be a rate-limiting control. The adsorption-rate constant and adsorption capacity of pseudo-second-order adsorption equation were calculated. The parameters (initial lead(II) concentration, sludge-particle size, and sludge dosages), which affect the adsorption capacity of sludge, were discussed by using the pseudo-second-order adsorption equation.  相似文献   

6.
在氯碱工业加工过程中会产生大量的甲烷氯化物废水,废水中含有大量的甲烷氯化物,该类废水不易处理,极大地影响了后续废水处理工作的开展。本文以某司甲烷氯化物具体试验为例,探讨高分子吸附剂在甲烷氯化物废水处理过程中的应用,在利用高分子吸附剂进行吸附的同时通过蒸汽吹脱使树脂中富集下来的甲烷氯化物得到分离回收,从而实现了废水的资源化,达到治废与资源利用的双重效果。  相似文献   

7.
Radionuclide sorption by natural and modified clays is extensively accepted to be an important process from the radioactive waste point of view. This work focused on modification of natural attapulgite with a layered double hydroxide to produce a novel chemisorbent for Sr2+, Ni2+, and Co2+ removal from multicomponent solution. The structural and surface characteristics of both attapulgite (ATP) and modified attapulgite (LDH-ATP) were investigated using XRD, FTIR, SEM, and thermal analysis. Comparison of sorption features of Sr2+, Ni2+, and Co2+ onto ATP and LDH-ATP was achieved; the results indicated that LDH-ATP was the most efficient sorbent for Sr2+, Ni2+, and Co2+. Kinetic studies established that the sorption is fast and reaching >90% within 30 min. The sorption of Sr2+, Ni2+, and Co2+ are well defined by non-linear pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity was determined using homogeneous surface diffusion (HSDM) model and found in the order 10−13 m2/min; this confirmed that the sorption of the three ions is chemisorption process. LDH-ATP can be employed as a candidate chemisorbent for the removal of some metal ions from waste solution.  相似文献   

8.
The use of sustainable, green and biodegradable natural wastes for Cr(VI) detoxification from the contaminated wastewater is considered as a challenging issue. The present research is aimed to assess the effectiveness of seven different natural biomaterials, such as jackfruit leaf, mango leaf, onion peel, garlic peel, bamboo leaf, acid treated rubber leaf and coconut shell powder, for Cr(VI) eradication from aqueous solution by biosorption process. Characterizations were conducted using SEM, BET and FTIR spectroscopy. The effects of operating parameters, viz., pH, initial Cr(VI) ion concentration, adsorbent dosages, contact time and temperature on metal removal efficiency, were studied. The biosorption mechanism was described by the pseudo-second-order model and Langmuir isotherm model. The biosorption process was exothermic, spontaneous and chemical (except garlic peel) in nature. The sequence of adsorption capacity was mango leaf > jackfruit leaf > acid treated rubber leaf > onion peel > bamboo leaf > garlic peel > coconut shell with maximum Langmuir adsorption capacity of 35.7 mg g?1 for mango leaf. The treated effluent can be reused. Desorption study suggested effective reuse of the adsorbents up to three cycles, and safe disposal method of the used adsorbents suggested biodegradability and sustainability of the process by reapplication of the spent adsorbent and ultimately leading towards zero wastages. The performances of the adsorbents were verified with wastewater from electroplating industry. The scale-up study reported for industrial applications. ANN modelling using multilayer perception with gradient descent (GD) and Levenberg-Marquart (LM) algorithm had been successfully used for prediction of Cr(VI) removal efficiency. The study explores the undiscovered potential of the natural waste materials for sustainable existence of small and medium sector industries, especially in the third world countries by protecting the environment by eco-innovation.  相似文献   

9.
The activated carbon was prepared using industrial solid waste called sago waste and physico-chemical properties of carbon were carried out to explore adsorption process. The effectiveness of carbon prepared from sago waste in adsorbing Rhodamine-B from aqueous solution has been studied as a function of agitation time, adsorbent dosage, initial dye concentration, pH and desorption. Adsorption equilibrium studies were carried out in order to optimize the experimental conditions. The adsorption of Rhodamine-B onto carbon followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Q0 was 16.12 mg g(-1) at initial pH 5.7 for the particle size 125-250 microm. The equilibrium time was found to be 150 min for 10, 20 mg l(-1) and 210 min for 30, 40 mg l(-1) dye concentrations, respectively. A maximum removal of 91% was obtained at natural pH 5.7 for an adsorbent dose of 100mg/50 ml of 10 mg l(-1) dye concentration and 100% removal was obtained when the pH was increased to 7 for an adsorbent dose of 275 mg/50 ml of 20 mg l(-1) dye concentration. Desorption studies were carried out in water medium by varying the pH from 2 to 10. Desorption studies were performed with dilute HCl and show that ion exchange is predominant dye adsorption mechanism. This adsorbent was found to be both effective and economically viable.  相似文献   

10.
Zhang FS  Itoh H 《Chemosphere》2006,65(1):125-131
Photocatalytic oxidation of arsenite and simultaneous removal of the generated arsenate from aqueous solution were investigated. The whole process was performed using an adsorbent developed by loading iron oxide and TiO2 on municipal solid waste melted slag. The loading was carried out through chemical reactions and high-temperature process. In the removal process, arsenite was first oxidized to arsenate, and then was removed by adsorption. The oxidation of arsenite was rapid, but the adsorption of the generated arsenate was slow. A concentration of 100 mg l(-1) arsenite could be entirely oxidized to arsenate within 3 h in the presence of the adsorbent and under UV-light irradiation, but the equilibrium adsorption of the generated arsenate needed 10 h. Arsenite could also be oxidized to arsenate only by UV-light, but the reaction rate was approximately 1/3 of that of the photocatalyzed reaction. Both acidic and alkaline conditions were favorable for the oxidation reaction, and the optimum pH value for the oxidation and adsorption was proposed to be around 3. To oxidize and remove original 20 mg l(-1) or 50 mg l(-1) arsenite from aqueous solution, the necessary adsorbent amount was 2 g l(-1) or 5 g l(-1), respectively. Furthermore, the surface properties of the adsorbent were examined and the oxidation mechanism of arsenite was discussed. It is believed that the adsorbent developed in this study is efficient, cost-effective and environment-friendly for application in arsenic-contaminated wastewater treatment.  相似文献   

11.
Sorption of Cr(VI) was carried out from dilute solutions using live and pretreated biomass in a batch mode. Effects of agitation time, adsorbent dosage and pH were examined. The autoclaved biomass that showed maximum adsorption capacity (Q(0)=0.335 mg g(-1)) was used as an adsorbent in column studies. The optimized flow rate of 2.5 ml min(-1) and bed height 10 cm were used to determine the effect of metal ion concentration on removal of Cr(VI). Applying the BDST model to calculate the adsorption capacity (N(0)) of column, which showed 4.56 x 10(-5), 7.28 x 10(-5), 6.89 x 10(-5), 3.07 x 10(-5), 2.80 x 10(-5)mg g(-1) for 4, 8, 12, 16 and 20 mg dm(-3) of Cr(VI), respectively. Batch sorption proved to be more efficient than the column sorption and hence batch sorption was used to remove Cr(VI) from a textile dyeing industry wastewater. The phytotoxic effect of treated and untreated wastewater was studied against Zea mays. Toxicity was reduced by 50% in the treated effluent.  相似文献   

12.
Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed.  相似文献   

13.
The sorptive behavior of the experimental herbicide quinmerac (7-chloro-3-methyl-quinoline-8-carboxylic acid) was investigated in soils of different organic carbon content. Distribution coefficients are low (Kd = 0.03 - 12 mL g−1) and are mainly determined by the soil organic carbon content. The adsorption mechanism operating in neutral to slightly acid agricultural soils is supposed to be cation bridging with the anionic form of quinmerac. Under acid conditions (pH 5.2) the predominating sorption mechanism is hydrophobic interaction. Therefore soil pH and cationic composition are also major factors determining the sorptive capacity of soils for quinmerac.

Adsorption kinetics, equilibrium adsorption and desorption isotherms were determined in batch experiments. Sorption kinetics were investigated at various times from 15 min to 96 hours. A two-step sorption behavior with time was found for the anionic form indicating two types of sorption mechanisms or sorption sites. Equilibrium for the first type was reached at a time-scale of minutes and for the second type after 24 hours. Adsorption isotherms were determined for two soil/solution ratios 1/5 and 1/3. Alteration of the adsorbent concentration exerted a strong influence on the adsorption isotherms. An increase of sorption was found with increasing adsorbent concentration. Under natural soil conditions sorption is therefore expected to be higher compared to the batch experiments. Desorption isotherms were obtained using the consecutive desorption method. Desorption hysteresis was not observed which indicates weak interactions. Implications of the results for the movement of quinmerac under field conditions and for models describing transport are discussed.  相似文献   


14.
In this article, adsorption modelling was presented to describe the sorption of textile dye, Direct Red 75 (DR75), from coloured wastewater onto the natural and modified adsorbent, Posidonia oceanica. The formulation of the double-layer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics some physico-chemical parameters related to the adsorption process were introduced in the analytical model expression. Fitting results show that the dye molecules are adsorbed in parallel position to the adsorbent surface. The magnitudes of the calculated adsorption energies show that the DR75 dye is physisorbed onto Posidonia. Both Van der Waals and hydrogen interactions are implicated in the adsorption process. Despite its simplicity, the model fits a wide range of experimental data, thereby supporting the underlying data that the grafted groups facilitate the parallel anchorage of the anionic dye molecule. Thermodynamic parameters, such as adsorption energy, entropy, Gibbs free adsorption energy and internal energy were calculated according to the double-layer model. Results suggested that the DR75 adsorption onto Posidonia was a spontaneous and exothermic process.  相似文献   

15.
In this study, activated carbon was prepared from waste tire by KOH chemical activation. The pore properties including the BET surface area, pore volume, pore size distribution, and average pore diameter were characterized. BET surface area of the activated carbon was determined as 558 m2/g. The adsorption of uranium ions from the aqueous solution using this activated carbon has been investigated. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied by a batch method. The optimum pH for adsorption was found to be 3. The removal efficiency has also been determined for the adsorption system as a function of initial concentration. The experimental results were fitted to Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherm models. A comparison of best-fitting was performed using the coefficient of correlation and the Langmuir isotherm was found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of uranium ions onto waste tire activated carbon was 158.73 mg/g. The thermodynamic equilibrium constant and the Gibbs free energy were determined and results indicated the spontaneous nature of the adsorption process. Kinetics data were best described by pseudo-second-order model.  相似文献   

16.
Brás I  Lemos L  Alves A  Pereira MF 《Chemosphere》2005,60(8):1095-1102
The minimization of pentachlorophenol (PCP) transport in the environment driven by industrial wastewater discharges can be accomplished by sorption in natural, available and low cost by-products like pine bark. Taking into account that PCP is a chemical which behaviour is highly dominated by the surrounding features, this work intended to evaluate the sorption kinetics and equilibrium parameters according to the pH and temperature as well as the pine bark particle size. The PCP uptake by pine bark showed to be faster in the initial phase followed by a slower process, being 24 h the suitably time to reach the sorption equilibrium in the range of pH studied. The neutral PCP species showed to have higher binding capacity to pine bark than the anionic PCP, which was reflected in a decrease in the distribution coefficient (Kd) of the linear sorption isotherm with the increase of solution pH from 2 to 7. On the other hand, between 10 degrees C and 35 degrees C, the temperature does not seem to play a significant role in the PCP sorption by pine bark, while the sorbent size is a key parameter to enhance the overall process.  相似文献   

17.
The effective disposal of redundant elephant dung (ED) is important for environmental protection and utilization of resource. The aim of this study was to remove a toxic-azo dye, Reactive Red (RR) 120, using this relatively cheap material as a new adsorbent. The FTIR–ATR spectra of ED powders before and after the sorption of RR 120 and zero point charge (pHzpc) of ED were determined. The sorption capacity of ED for removing of RR 120 were carried out as functions of particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. Sorption isotherm, kinetic, activation energy, thermodynamic, and desorption parameters of RR 120 on ED were studied. The sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. FTIR–ATR spectroscopy indicated that amine and amide groups have significant role on the sorption of RR 120 on ED. The pHzpc of ED was found to be 7.3. Sorption kinetic of RR 120 on ED was well described by sigmoidal Logistic model. The Langmuir isotherm was well fitted to the equilibrium data. The maximum sorption capacity was 95.71 mg?g?1. The sorption of RR 120 on ED was mainly physical and exothermic according to results of DR isotherm, Arrhenius equation, thermodynamic, and desorption studies. The thermodynamic parameters showed that this process was feasible and spontaneous. This study showed that ED as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process.  相似文献   

18.
褐煤对废水中酸性红B的吸附去除   总被引:1,自引:0,他引:1  
选用褐煤作为廉价吸附剂,脱除模拟废水中染料酸性红B。研究了褐煤对废水中酸性红B的吸附动力学、等温吸附模式,考察了pH、褐煤投加量以及离子强度(NaCl)对吸附效果的影响。结果表明,吸附动力学较好地符合准二级速率方程(R2=1.000),并且以化学吸附为主;吸附等温式满足Langmuir方程(R2=0.986),最大单分子层吸附量为42 mg/g;废水中染料的去除率随溶液pH的减小而明显增加,在pH=1时,去除效果最好,证实吸附过程存在静电吸引及化学键合;在一定条件下,溶液中酸性红B的去除率随褐煤投加量增加而增加;吸附效果随溶液中离子强度(NaCl)的增加而增强。说明褐煤可以作为一种廉价吸附材料,用于处理含染料废水。  相似文献   

19.
Ko TH  Chu H  Tseng JJ 《Chemosphere》2006,64(6):881-891
In this study, seven natural soils were tested for the sorption of hydrogen sulfide from coal gasification gas at high temperature. Results indicate that the LP natural soil has the best performance and the highest sulfur sorption capacity. After extracting free iron oxides, most natural soils have no sorption efficiency. The free iron oxides, therefore, proved to be the major components that react with hydrogen sulfide to form iron sulfides. The sulfur sorption capacity, either determined by EA or breakthrough time, is very close to the theoretical value based on the stoichiometric calculation with the content of free iron oxides. Moreover, the presence of CO is a positive effect while H2 is a negative effect. This can be explained via the water-shift reaction. On the basis of the results of temperature-programmed sulfidation (TPS), the starting temperature for the sorption of hydrogen sulfide is between 623-673 K. From the analyses of temperature-programmed oxidation (TPO) and XPS, the iron polysulfides are the major products and approximately 90% regeneration efficiency can be theoretically achieved while the temperature is controlled higher than 813 K. In the regeneration tests, the results show that the LP natural soil can be regenerated and thus reused after the oxidation process. No significant degeneration occurs on the LP natural soil after five sorption/regeneration cycles. The sulfur sorption capacity of the tenth regenerated soil can be achieved at least 80% compared to the fresh one. The experimental analyzed SO2 concentration from the regeneration process is almost identical to the theoretical calculated equilibrium concentration of the process. Maghemite is the main product after the regeneration process.  相似文献   

20.
Fe(III)/Cr(III) hydroxide, a waste material from the fertilizer industry, has been used for the adsorption of Cr(VI) from aqueous solution, over a range of initial metal ion concentrations (5-30 mg litre(-1)), agitation times (1-180 min), adsorbent dosages (100-1200 mg per 50 ml), temperatures (24, 29 and 38 degrees C) and pH values (4.5-10). The adsorption of Cr(VI) increased with the initial concentration of Cr(VI) and with temperature. The process of uptake follows both the Langmuir and the Freundlich isotherm models. The applicability of Lagergren and empirical kinetic models has also been investigated. Almost quantitative removal of Cr(VI) at 10 mg litre(-1) in a 50-ml solution by 500 mg of adsorbent was found at an equilibrium pH of 5.6. The efficiency of chromium removal was also tested using wastewater from the chromium plating industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号