首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
The intensive reconstructive sampling (1957–2004, 39 localities), a systematic direct observation (1992–2004, 1 locality) and particular direct observations (66 localities) of Posidonia oceanica meadows were analysed together with temporal series of flowering available in the literature (19 localities). This allowed the examination of temporal and spatial variability in annual flowering prevalence (FP, the fraction of meadows flowering in a given year) and of annual meadow flowering intensity (FI, number of inflorescences per shoot) for the period 1979–2004 across the Western Mediterranean, as well as spatial variability of flowering frequency (FF, the fraction of years that a given meadow has flowered) and shoot flowering probability (Pf, fraction of flowering stalks appeared per annual segment). Each year, on an average 17% of the investigated meadows flowered, ranging from 3 to 86% of meadows among the years. The highest annual FP and FI values were obtained in 2003 (FP=0.86 and mean FI=0.23±0.03 inflorescences shoot−1). A secondary peak of FP and mean FI occurred 9 years earlier, in 1994 (FP=0.44 and mean FI=0.08±0.02). Both peaks of flowering occurred after hot summers. Flowering synchrony in particular years across the Western Mediterranean and clines of increased meadow flowering frequency towards the North and East, suggests the existence of large-scale environmental mechanisms controlling the floral induction. On the other hand, meadow FF and Pf were highly heterogeneous among and within the meadows, indicating that local factors also may play a significant role in flowering induction. When flowering, the Western Mediterranean meadows showed an average 0.11±0.02 inflorescences shoot−1, but FI greatly varied among and along the series (from 0.002 to 0.54 inflorescences shoot−1) and decreased significantly with depth but was independent of meadow shoot density and meadow latitude or longitude. The shoot flowering probability was quite low (0.007±0.002 inflorescences shoot−1 year−1) and exponentially increased with shoot age.  相似文献   

2.
Although mysids play important roles in marine food chains, studies on their production are scarce, especially for warm-water species. We investigated life history and production of Orientomysis robusta in a shallow warm-temperate habitat of the Sea of Japan. Its spawning and recruitment occurred throughout the year; 19 overlapping cohorts were recognizable over an annual cycle. The summer cohorts recruited in July–September exhibited rapid growth, early maturity, small brood size, and small body size. A converse set of life history traits characterized the autumn–winter cohorts recruited in October–March. The spring cohorts recruited in April–June had intermediate characteristics of both cohorts. Life spans were 19–33, 21–48, and 69–138 days for summer, spring, and autumn–winter cohorts, respectively, and mortality rates were high for spring and summer cohorts, especially during June–August but were low for autumn–winter cohorts. Production calculated from the summation of growth increments was 488.8 mg DW m−2 year−1 with an annual P/B ratio of 21.26. The short life span seems to be responsible for such an extremely high P/B ratio. A method not requiring recognition and tracking cohorts gave similar values (534.0 mg DW m−2 year−1 and 20.49). The close agreement in production values between the two methods indicates our estimates are valid.  相似文献   

3.
Egg production was measured in 17 species of copepods from the genera Acartia, Calanopia, Centropages, Clausocalanus, Corycaeus, Eucheata, Euterpina, Oithona, Oncaea, Paracalanus, Parvocalanus, Temora and Undinula in Jamaican waters. At the high local temperatures (∼28 °C), mean egg production ranged from 3.2 to 88 eggs female–1 d–1, and instantaneous female growth (g, as egg production) ranged from 0.04 to 0.87 d–1. Female growth was positively related to ambient chlorophyll concentration (r 2 = 0.44) and negatively to female body size (r 2 = 0.29). Together these two variables explained 60% of the variation in growth. When quadratic terms for chlorophyll and a term for interaction of body size and chlorophyll were introduced, 82% of the variance in growth rate was explained. Egg production rates represent an extension of the resource and size-dependent relationship established for copepodites. In smaller species (<3.5 μg), egg production was comparable to prior copepodite somatic growth; in larger species (>3.5 μg), egg production is compromised at lower resource concentrations than copepodite somatic growth. Thus, it appears that egg production in tropical copepods may be frequently limited by resources in a size-dependent manner. Under conditions where growth is resource limited, we caution against the application of egg production rates for the calculation of total copepod production. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

4.
Seagrass meadows are among the most productive ecosystems in the marine environment. It has been speculated that much of this production is exported to adjacent ecosystems via the movements of organisms. Our study utilized stable isotopes to track seagrass-derived production into offshore food webs in the northeastern Gulf of Mexico. We found that gag grouper (Myctereoperca microlepis) on reefs as far as 90 km from the seagrass beds incorporate a significant portion of seagrass-derived biomass. The muscle tissue of gag grouper, a major fisheries species, was composed on average of 18.5–25% seagrass habitat-derived biomass. The timing of this annual seagrass subsidy appears to be important in fueling gag grouper egg production. The δ34S values of gag grouper gonad tissues varied seasonally and were δ34S depleted during the spawning season indicating that gag utilize the seagrass-derived biomass to support reproduction. If such large scale trophic subsidies are typical of temperate seagrass systems, then loss of seagrass production or habitat would result in a direct loss of offshore fisheries productivity.  相似文献   

5.
The food sources of benthic deposit feeders were investigated at three stations in an estuarine mudflat (Idoura Lagoon, Sendai Bay, Japan) during July and August 2005, using δ13C and δ15N ratios. Sediment at the stations was characterized by low chlorophyll (chl) a content (0–1 cm depth, <4 μg cm−2) and the dominance of riverine–terrestrial materials (RTM) in the sediment organic matter (SOM) pool. Surface-deposit feeders (Macoma contabulata, Macrophthalmus japonicus, and Cyathura muromiensis) exhibited much higher δ13C values (−18.4 to −12.4‰) than did the SOM pool (<−25‰). A δ13C-based isotopic mixing model estimated that benthic diatoms comprised 45–100% (on average) of their assimilated diet, whereas RTM comprised a lesser fraction (29% maximum). The major diet of the deep-deposit feeding polychaetes Notomastus sp. and Heteromastus sp. was benthic diatoms and/or marine particulate organic matter (POM), with little RTM assimilated (39% maximum). The consumers appeared to lack specific digestive enzymes and to use detritus-derived carbon only after its transfer to the microbial biomass. The isotopic mixing model also showed that the dietary contribution of RTM increased slightly (15% maximum) in the vicinity of freshwater input, suggesting that spatial changes in RTM supply affect the dietary composition of deposit feeders. These results clearly demonstrate that deposit feeders selectively ingest and/or assimilate the more nutritious microalgal fractions in the SOM pool. Such adaptations may allow enhanced energy gain in estuarine mudflats that are rich in vascular plant detritus with low nutritive value.  相似文献   

6.
Human-mediated and natural disturbances such as nutrient enrichment, habitat modification, and flood events often result in significant shifts in species composition and abundance that translate into changes in the food web structure. Six mass-balanced models were developed using the “Ecopath with Ecosim” software package to assess changes in benthic food web properties in the Mondego estuarine ecosystem (Portugal). Field, laboratory and literature information were used to construct the models. The main study objective was to assess at 2 sites (a Zostera meadow and a bare sediment area) the effects of: (1) a period of anthropogenic enrichment, which led to excessive production of organic matter in the form of algal blooms (1993/1994); (2) the implementation of mitigation measures, following a long period of eutrophication (1999/2000); and (3) a centenary flood (winter 2000/2001). Different numbers of compartments were identified at each site and in each time period. In general, the Zostera site, due to its complex community, showed a higher number of compartments and a higher level of system activity (i.e. sum of consumptions, respiration, flow to detritus, production, total system throughput, net primary production and system omnivory index). The differences at the two sites in the three time periods in the breakdown of throughput were mainly due to differences in the biomass of the primary producers (higher primary production at the Zostera site). Consumption, respiration and flow to detritus were dominated by the grazers Hydrobia ulvae and Scrobicularia plana at the Zostera and bare sediment sites respectively. At both sites, after recovery measures were implemented there was an increase in S. plana and Hediste diversicolor biomass, consumption, respiration and flows to detritus, and a decrease in H. ulvae biomass and associated flows, which increased again after the flood event. The mass-balanced models showed that the trophic structure of the benthic communities in Mondego estuary was affected differently by each disturbance event. Interestingly, in our study a high system throughput seems to be associated with higher stress levels, which contradicts the idea that higher system activity is always a sign of healthier conditions.  相似文献   

7.
Based on a large monitoring data set from Danish coastal waters we tested the hypotheses: (1) The vertical pattern of algal abundance is regulated by exposure in shallow water and by light limitation towards deeper water, resulting in a bell-shaped abundance curve, with peak abundance located deeper at more exposed sites, (2) in deeper water, total algal abundance and abundance of perennial algae decrease along a eutrophication gradient while (3) abundance and relative abundance of opportunists increase. The vertical pattern of algal abundance showed a peak at intermediate water depths which was located deeper in more exposed areas and thus confirmed our first hypothesis. For algae growing from depths of peak abundance and deeper, the study demonstrated that total algal abundance and abundance of perennials and opportunists at given depths decreased significantly along a eutrophication gradient and the relationships had high explanatory power (R 2 = 0.53–0.73). These results confirmed our second hypothesis. By contrast, the relative abundance of opportunists responded solely to salinity and was largest in the most brackish areas, in contradiction to hypothesis three. The lack of coupling between eutrophication and relative abundance of opportunists arises because both opportunists and the entire algal community were light limited and their ratio therefore relatively insensitive to changing water clarity. The analyses indicated that algal abundance initially responded slowly to increasing eutrophication but showed a more marked response at TN concentrations of 35–40 μM. However, the existence of possible threshold nutrient levels demands further analyses.  相似文献   

8.
The functional response of the aspects of reproductive success of a southwestern Baltic population of Acartia tonsa (Copepoda: Calanoida) was quantified in the laboratory using wide ranges in temperatures and salinities. Specifically, daily egg production (EP, # female−1 day−1) was determined for 4 or 5 days at 18 different temperatures between 5 and 34°C and the time course and success of hatching were evaluated at 10 different temperatures between 5 and 23°C. The effect of salinity (0 to 34 psu) on egg hatching success was also examined. The highest mean rates of EP were observed between 22 and 23°C (46.8–50.9 eggs female−1 day−1). When studied at 18 psu, hatching success of eggs increased with increasing temperature and was highest (92.2%) at 23°C. No hatching was observed for eggs incubated at low temperatures (≤12°C) that were produced by females acclimated to temperatures ≤10°C indicating a possible thermal threshold between 10.0 and 13.0°C below which only the production of diapause (or low quality) eggs exists in this population. When tested at 18°C, the hatching success of eggs incubated at 15 different salinities increased asymptotically with increasing salinity and was maximal (81.4–84.5%) between 17 and 25 psu. The high reproductive success observed over wide ranges in temperatures and salinities in this Baltic population demonstrates one of the mechanisms responsible for the cosmopolitan distribution of this species within productive, estuarine and marine habitats.  相似文献   

9.
The transport of eel early life stages may be critical to their population dynamics. This transport from ocean spawning to freshwater, estuarine and coastal nursery areas is a combination of physical and biological processes (including swimming behavior). In New Jersey, USA, the American eel (Anguilla rostrata) enters estuaries as glass eels (48.7–68.1 mm TL) in contrast to the Conger eel (Conger oceanicus) that enters as larger (metamorphosing) leptocephali (68.3–117.8 mm TL). To begin to understand the mechanisms of cross-shelf transport for these species, we measured the potential swimming capability (critical swimming speed, U crit) under ambient conditions throughout the ingress season. A. rostrata glass eels were collected over many months (January–June) at a range of temperatures (4–21°C), with relative condition declining over the course of the ingress period as temperatures warmed. C. oceanicus occurred later in the season (April–June) and at warmer temperatures (14–24.5°C). Mean U crit values for A. rostrata (11.7–13.3 cm s−1) and C. oceanicus (14.7–18.6 cm s−1) were comparable, but variable, with portions of the variability explained by water temperature, relative condition, ontogenetic stage, and fish length. Travel times to Little Egg Inlet, New Jersey, estimated using 50% U crit values, indicate it would take A. rostrata ~30 and ~60 days to swim from the shelf edge and Gulf Stream, respectively. Travel times for C. oceanicus were shorter, ~20 days from the shelf edge, and ~45 days from the Gulf Stream. Despite differences in life stage, our results indicate both species are competent swimmers, and suggest they are capable of swimming from the Gulf Stream and/or edge of the continental shelf to estuarine inlets.  相似文献   

10.
The feeding ecology of the green tiger shrimp Penaeus semisulcatus was studied in inshore fishing grounds off Doha, Qatar, using a combination of stable isotope (δ13C and δ15N) analysis and gut contents examination. Samples of post-larvae, juvenile and adult shrimp and other organisms were collected from intertidal and subtidal zones during the spawning season (January–June). Shrimp collected from shallow water seagrass beds were mostly post-larvae and juveniles and were significantly smaller than the older juveniles and adults caught in deeper macroalgal beds. Gut content examination indicated that post-larvae and juvenile shrimp in seagrass beds fed mainly on benthos such as Foraminifera, polychaetes, benthic diatoms and small benthic crustaceans (amphipods, isopods and ostracoda), whereas larger shrimp in the macroalgal beds fed mainly on bivalve molluscs and to a lesser extent polychaetes. In shrimp from both seagrass and algal beds, unidentifiable detritus was also present in the gut (18, 32%). δ13C values for shrimp muscle tissue ranged from −9.5 ± 0.26 to −12.7 ± 0.05‰, and δ15N values increased with increasing shrimp size, ranging from 4.1 ± 0.03 to 7.7 ± 0.11‰. Both δ15N values and δ13C values for shrimp tissue were consistent with the dietary sources indicated by gut contents and the δ13C and δ15N values for primary producers and prey species. The combination of gut content and stable isotope data demonstrates that seagrass beds are important habitats for post-larvae and juvenile P. semisulcatus, while the transition to deeper water habitats in older shrimp involves a change in diet and source of carbon and nitrogen that is reflected in shrimp tissue stable isotope ratios. The results of the study confirm the linkage between sensitive shallow water habitats and the key life stages of an important commercially-exploited species and indicate the need for suitable assessment of the potential indirect impacts of coastal developments involving dredging and land reclamation.  相似文献   

11.
This work deals with the biodiversity and distribution of benthic macrophytes in the Ghar El Melh lagoon, a Mediterranean coastal lagoon located in the North of Tunisia. An inventory was made of the benthic flora and submerged macrophyte communities were mapped during two successive campaigns (the summer of 1999 and the winter of 2000). The following 24 macrophyte species were identified: seven red algae, two brown algae, 11 green algae, and four marine angiosperms. The results were compared with available data from the literature. Ruppia cirrhosa is the most dominant species. It is found in all lagoon parts, except in the west sector.Ruppia beds are usually associated withCladophora forming heterogeneous communities. During summerRuppia cirrhosa shows a large distribution, covering an area of ca. 21.4 km2, with dense, extensive beds covering 80–100%. In winter, severalCladophora species have a very large distribution as well, covering nearly an area of 28.5 km2 with an average cover of 46%. The green algaeCaulerpa prolifera is confined to the eastern part of the lagoon which is mainly affected by seawater. In comparison with previous situations, many transformations were observed in biodiversity and spatial distribution of the dominant communities. Thus,Cymodocea nodosa andZostera beds, which dominated in the 1970s, were replaced byZostera andCaulerpa prolifera in the 1980s and are currently succeeded byRuppia cirrhosa andCladophora. Restoration of the Ghar El Melh lagoon will enable an increase in the exchange with the open sea and the circulation of water, in particular in the confined zones. This should considerably improve the water quality and would positively influence the phytobenthic communities.  相似文献   

12.
A restoration programme was introduced in the Mondego Estuary (Portugal) to recover seagrass beds of Zostera noltii endangered by eutrophication. A long-term survey of 10 years was used to assess the development of the processes involved, focusing one of the key species (Cyathura carinata, Isopoda). The mitigation measures implemented since 1998 (nutrient loading reduction, freshwater circulation improvement and seagrass bed protection) enhanced water quality and seagrass recovery, thus preventing the development of macroalgal blooms. C. carinata was resilient to the occurrence of floods and macroalgal blooms, although both events caused dispersion of individuals. This isopod was not much influenced by the changes occurring in the estuary, showing an unalterable population structure during the entire study period. After 1998, its density and biomass became more stable at an inner unvegetated sand flat area, where this isopod was most abundant; its population slightly increased in a bare mud flat at the middle section of the estuary; but it could not establish successfully in a downstream Z. noltii bed, contrarily to other common estuarine species. Apart from other unknown reasons, the disrupted balanced between trematodes and their hosts, caused by the eutrophication processes, may have an important role in the discontinuity of C. carinata at the Z. noltii bed. If the intertidal areas become fully restored to the original seagrass coverage, high prevalence and intensity trematodes may prevent this isopod and other crustaceans from recovering within the intervened areas, by enhancing host mortality and recruitment failure. In order to avoid this kind of situation, it may be necessary to survey the levels of parasite infestation within the target hosts and safeguard areas where crustaceans present healthy populations.  相似文献   

13.
Five field surveys were conducted in an estuarine intertidal sandflat of the Seto Inland Sea (Japan) between April 1994 and April 1995. Chlorophyll a, pheopigments, total organic carbon and acid-volatile sulphides (AVS) of surface and subsurface sediments, and macrofaunal assemblages were investigated in parallel at 15 stations. Monthly hydrological data of low-tide creek water adjacent to the flat were used as a complementary environmental characterisation of the study area. Strong temporal changes were found among sampling dates, most remarkably in autumn with a major increase of algal detritus and AVS, a sharp reduction in macrofaunal abundances and species richness, and a massive mortality of the clam Ruditapes philippinarum. This dystrophic event was preceded by a photoautotrophic and hypertrophic spring–summer characterized by abundant fresh (i.e., living) algal material, including microphytobenthos and macroalgae (Ulva sp.). In summer, abundant macrofaunal assemblages reached the highest biomass values (455 g wet weight m−2 or 60.6 g ash free dry weight m−2), with a major contribution of filter-feeding bivalves Musculista senhousia and R. philippinarum. These are among the highest values reported in the literature for sedimentary shores. From autumn, there was a progressive recolonisation of macrofauna, initiated by few opportunistic polychaetes (e.g., Cirriformia tentaculata and Polydora sp.), apparently promoting a fast sediment recovery in winter, and followed by new bivalve recruits in the next spring. This study provides the first evidence of significant and interlinked within-year changes in chemical characteristics of sediments and macrofaunal assemblages in an estuarine intertidal flat at a small spatial scale (i.e., tens of meters). This demonstrates the high temporal variability of species–environment relations in these systems and a close relationship in seasonally driven trophodynamic processes among primary producers and benthic consumers. We conclude that a thorough parallel evaluation of the temporal changes in chemical characteristics of sediments should be taken into account in assessing the year-round distribution and changes of intertidal macrofauna, particularly in eutrophic, estuarine intertidal flats.An erratum to this article can be found at  相似文献   

14.
Recent evaluations of estuarine and coastal nutrient budgets implicate atmospheric deposition as a potentially significant (20 to 30%) source of biologically available nitrogen. We examined the potential growth stimulating impact of atmospheric nitrogen loading (ANL), as local rainfall, in representative shallow, nitrogen limited North Carolina mesohaline estuarine and euhaline coastal Atlantic Ocean habitats. From July 1988 to December 1989, using in situ bioassays, we examined natural phytoplankton growth responses, as14CO2 assimilation and chlorophylla production, to rain additions over a range of dilutions mimicking actual input levels. Rainfall at naturally occurring dilutions (0.5 to 5%) stimulated both14CO2 assimilation and chlorophylla production, in most cases in a highly significant manner. Parallel nutrient enrichments consistently pointed to nitrogen as the growth stimulating nutrient source. Generally, more acidic rainfall led to greater magnitudes of growth stimulation, especially at lower dilutions. Nutrient analyses of local rainfall from May 1988 to January 1990 indicated an inverse relationship between pH and NO 3 - content. There have been growing concerns regarding increasing coastal and estuarine eutrophication, including ecologically and economically devastating phytoplankton blooms bordering urban and industrial regions of North America, Europe, Japan, and Korea. It appears timely, if not essential, to consider atmospheric nutrient loading in the formulation and implementation of nutrient management strategies aimed at mitigating coastal eutrophication.  相似文献   

15.
Marja Koski 《Marine Biology》2007,151(5):1785-1798
Feeding, egg production, hatching success and early naupliar development of Calanus finmarchicus were measured in three north Norwegian fjords during a spring bloom dominated by diatoms and the haptophyte Phaeocystis pouchetii. Majority of the copepod diet consisted of diatoms, mainly Thalassiosira spp. and Chaetoceros spp., with clearance rates up to 10 ml ind−1 h−1 for individual algae species/groups. Egg production rates were high, ranging from ca 40 up to 90 eggs f−1 d−1, with a hatching success of 70–85%, and fast naupliar development through the first non-feeding stages. There was no correlation between the egg or nauplii production and diatom abundance, but the hatching success was slightly negatively correlated with diatom biomass. However, the overall high reproductive rates suggested that the main food items were not harmful for C. finmarchicus reproduction in the area, although direct chemical measurements were not conducted. The high population egg production (>1,20,000 eggs m−2 d−1) indicated that a large part of the annual reproduction took place during the investigation, which stresses the importance of diatom-dominated spring phytoplankton bloom for population recruitment of C. finmarchicus in these northern ecosystems.  相似文献   

16.
Erhan Mutlu 《Marine Biology》2009,156(5):935-957
The spatial distributions of gelatinous organism were studied during three cruises in 2006–2007. These were the first such studies conducted in the southern Black Sea for last decade. Additionally, the different methods of estimating gelatinous organism biomass presently in use were compared and recent situation of pelagic fishery interacting with zooplankton in the Black Sea were overviewed. Biomasses and abundances of both invading Mnemiopsis leidyi, and the resident Aurelia aurita and Pleurobrachia pileus were remarkably reduced (total gelatinous biomass: 417–537 g m−2 in May, June, and 150 g m−2 in October) as compared with those before the 1997 with invasion Beroe ovata in the southern Black Sea. Specimens of B. ovata were detected only in October when individuals with lengths of 10–50 mm comprised 93% of its population. Length–weight based biomasses were significantly variable for all species depending on the size structure in time. Larger sized individuals (>30 mm) of M. leidyi appeared as compared with those before year 1997. The ecosystem of the Black Sea has been suppressed both bottom–up through decreased eutrophication and top–down through reduced grazing on mesozooplankton by M. leidyi that are in turn controlled by grazing by B. ovata. The catch of anchovy was abruptly reduced to 120,000 tons due presumably to the considerably increased catch of its predator, the bonito (64,000 tons) in the year 2005.  相似文献   

17.
The seasonal productivity cycle and factors controlling annual variation in the timing and magnitude of the winter–spring bloom were examined for several locations (range: 42°20.35′–42°26.63′N; 70°44.19′–70°56.52′W) in Boston Harbor and Massachusetts Bay, USA, from 1995 to 1999, and compared with earlier published data (1992–1994). Primary productivity (mg C m−2 day−1) in Massachusetts Bay from 1995 to 1999 was generally characterized by a well-developed winter–spring bloom of several weeks duration, high but variable production during the summer, and a prominent fall bloom. The bulk of production (mg C m−3 day−1) typically occurred in the upper 15 m of the water column. At a nearby Boston Harbor station a gradual pattern of increasing areal production from winter through summer was more typical, with the bulk of production restricted to the upper 5 m. Annual productivity in Massachusetts Bay and Boston Harbor ranged from a low of 160 g C m−2 year−1 to a high of 787 g C m−2 year−1 from 1992 to 1999. Mean annual productivity was higher (mean=525 g C m−2 year−1) and more variable near the harbor entrance than in western Massachusetts Bay. At the harbor station productivity varied more than 3.5-fold (CV=40%) over an 8 year sampling period. Average annual productivity (305–419 g C m−2 year−1) and variability around the means (CV=25–27%) were lower at both the outer nearfield and central nearfield regions of Massachusetts Bay. Annual productivity in 1998 was unusually low at all three sites (<220 g C m−2 year−1) due to the absence of a winter–spring phytoplankton bloom. Potential factors influencing the occurrence of a spring bloom were investigated. Incident irradiance during the winter–spring period was not significantly different (P > 0.05) among years (1995–1999). The mean photic depth during the bloom period was significantly deeper (P < 0.05) in 1998, signifying greater light availability with depth. Nutrients were also in abundance during the winter–spring of 1998 with stratified conditions not observed until May. In general, the magnitude of the winter–spring bloom in Massachusetts Bay from 1995 to 1999 was significantly correlated with winter water temperature (r 2=0.78) and zooplankton abundance (r 2=0.74) over the bloom period (typically February–April). The absence of the 1998 bloom was associated with higher than average water temperature and elevated levels of zooplankton abundance just prior to, and during, the peak winter–spring bloom period. Received: 3 July 2000 / Accepted: 6 December 2000  相似文献   

18.
Bacterial abundance, production, and extracellular enzyme activity were determined in the shallow water column, in the epiphytic community of Thalassia testudinum, and at the sediment surface along with total carbon, nitrogen, and phosphorus in Florida Bay, a subtropical seagrass estuary. Data were statistically reduced by principle components analysis (PCA) and multidimensional scaling and related to T. testudinum leaf total phosphorus content and phytoplankton biomass. Each zone (i.e., pelagic, epiphytic, and surface sediment community) was significantly dissimilar to each other (Global R = 0.65). Pelagic aminopeptidase and sum of carbon hydrolytic enzyme (esterase, peptidase, and α- and β-glucosidase) activities ranged from 8 to 284 mg N m−2 day−1 and 113–1,671 mg C m−2 day−1, respectively, and were 1–3 orders of magnitude higher than epiphytic and sediment surface activities. Due to the phosphorus-limited nature of Florida Bay, alkaline phosphatase activity was similar between pelagic (51–710 mg P m−2 day−1) and sediment (77–224 mg P m−2 day−1) zones but lower in the epiphytes (1.1–5.2 mg P m−2 day−1). Total (and/or organic) C (111–311 g C m−2), N (9.4–27.2 g N m−2), and P (212–1,623 mg P m−2) content were the highest in the sediment surface and typically the lowest in the seagrass epiphytes, ranging from 0.6 to 8.7 g C m−2, 0.02–0.99 g N m−2, and 0.5–43.5 mg P m−2. Unlike nutrient content and enzyme activities, bacterial production was highest in the epiphytes (8.0–235.1 mg C m−2 day−1) and sediment surface (11.5–233.2 mg C m−2 day−1) and low in the water column (1.6–85.6 mg C m−2 day−1). At an assumed 50% bacterial growth efficiency, for example, extracellular enzyme hydrolysis could supply 1.8 and 69% of epiphytic and sediment bacteria carbon demand, respectively, while pelagic bacteria could fulfill their carbon demand completely by enzyme-hydrolyzable organic matter. Similarly, previously measured T. testudinum extracellular photosynthetic carbon exudation rates could not satisfy epiphytic and sediment surface bacterial carbon demand, suggesting that epiphytic algae and microphytobenthos might provide usable substrates to support high benthic bacterial production rates. PCA revealed that T. testudinum nutrient content was related positively to epiphytic nutrient content and carbon hydrolase activity in the sediment, but unrelated to pelagic variables. Phytoplankton biomass correlated positively with all pelagic components and sediment aminopeptidase activity but negatively with epiphytic alkaline phosphatase activity. In conclusion, seagrass production and nutrient content was unrelated to pelagic bacteria activity, but did influence extracellular enzyme hydrolysis at the sediment surface and in the epiphytes. This study suggests that seagrass-derived organic matter is of secondary importance in Florida Bay and that bacteria rely primarily on algal/cyanobacteria production. Pelagic bacteria seem coupled to phytoplankton, while the benthic community appears supported by epiphytic and/or microphytobenthos production.  相似文献   

19.
From May 2002 to October 2003, a fortnightly sampling programme was conducted in a restricted macrotidal ecosystem in the English Channel, the Baie des Veys (France). Three sets of data were obtained: (1) physico-chemical parameters, (2) phytoplankton community structure illustrated by species composition, biovolume and diversity, and (3) primary production and photosynthetic parameters via P versus E curves. The aim of this study was to investigate the temporal variations of primary production and photosynthetic parameters in this bay and to highlight the potential links with phytoplankton community structure. The highest level of daily depth-integrated primary production Pz (0.02–1.43 g C m−2 d−1) and the highest maximum photosynthetic rate P B max (0.39–8.48 mg C mg chl a −1 h−1) and maximum light utilization coefficient αB [0.002–0.119 mg C mg chl a −1 h−1 (μmol photons m−2 s−1)] were measured from July to September. Species succession was determined based on biomass data obtained from cell density and biovolume measurements. The bay was dominated by 11 diatoms throughout the year. However, a Phaeocystis globosa bloom (up to 25 mg chl a m−3, 2.5 × 106 cells l−1) was observed each year during the spring diatom bloom, but timing and intensity varied interannually. Annual variation of primary production was due to nutrient limitation, light climate and water temperature. The seasonal pattern of microalgal succession, with regular changes in composition, biovolume and diversity, influenced the physico-chemical and biological characteristics of the environment (especially nutrient stocks in the bay) and thus primary production. Consequently, investigation of phytoplankton community structure is important for developing the understanding of ecosystem functioning, as it plays a major role in the dynamics of primary production.  相似文献   

20.
Reproduction and growth of the dominant copepods Calanus finmarchicus, C. glacialis, C. hyperboreus and Pseudocalanus minutus were studied on transects across the sea ice zone of the northern Barents Sea in May and June 1997. C. glacialis and C. finmarchicus were numerically dominant and also the largest component of the biomass. C. hyperboreus was rather rare. Moderate levels of phytoplankton and eventually high concentrations of ice algae supported maximum egg production rates of 53.6 and 48.5 eggs female–1 day–1 of C. glacialis in May and June, respectively. Results of incubation experiments were supported by a tremendous abundance of C. glacialis eggs in the water column ranging from 7×103 to 4.4×104 m–2 in May and from 9.8×103 to a maximum of 9.7×104 m–2 in June. In contrast, C. finmarchicus spawned only in the vicinity of the ice edge, at a maximum rate of 30 eggs female–1 day–1. Egg sacs of P. minutus were often observed in the preserved samples, but contained only few eggs, which may be due to loss during sampling. The presence of considerable concentrations of young stages in May and June indicated successful recruitment of C. glacialis and P. minutus. Back calculation using published stage duration estimates indicates March/April as the begin of the reproductive and growth period for these species under the first-year ice of the Barents Sea. Hence, secondary production in the study area starts at the same time as in open water regions and polynyas in the northern North Atlantic. Although the role of ice algae in the nutrition of copepods was not clarified here, the significant relationship between phytoplankton chlorophyll and egg production of C. glacialis suggests that high reproductive activity has already been achieved at moderate food concentrations.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号