首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general model for annual runoff rate predictions of total copper from naturally patinated copper on buildings at specific urban or rural sites of low chloride influence has been deduced from laboratory and field data. All parameters within the model have a physical meaning and include the average annual rain acidity (pH), the annual rain quantity and the geometry of a building in terms of surface inclination. In 70% of all reported annual runoff rates, the predicted values are within 30% from the observed values. The individual and interactive effect of rain composition in terms of pH, sulfate, chloride and nitrate concentration was investigated in immersion experiments in artificial rain water representative of urban and rural sites of Europe. The results show pH to have a dominating effect on patina dissolution, nitrate to have a small inhibiting effect, whereas no significant effect was seen for chloride and sulfate. In case pH data are not available, a model has been statistically deduced from field data by considering SO2 as influencing parameter, rather than pH. The predictability with the SO2 model is not as good as with the pH model i.e. the pH model should preferentially be used since it is a better predictor and all parameters within the model can be physically explained.  相似文献   

2.
Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R 2 = 0.873) accounted for slightly more variability than the equation with untransformed data (R 2 = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.  相似文献   

3.
The behaviour of the three organophosphate esters tributyl phosphate (TBP), tris(2-chloroethyl)phosphate (TCEP) and tris(2-butoxyethyl)phosphate (TBEP) during infiltration of river water to ground water has been investigated. The monitoring site is the Oder River and the adjacent Oderbruch aquifer. From March 2000 to July 2001, 76 ground water samples from monitoring wells located close to the Oder River and nine river water samples were collected. Additionally, influent and effluent samples from local waste water treatment plants, one sample of rain water and samples of roof runoff were collected. All samples were analysed by solid-phase-extraction followed by gas chromatography/mass spectrometry. TBP, TCEP and TBEP were detected at mean values of 622 ng l(-1), 352 ng l(-1), and 2955 ng l(-1), respectively in municipal waste water effluents. This points to a major input of these compounds into the Oder River by municipal waste water discharge. The concentrations of TBP and TBEP decreased downstream the Oder River possibly due to aerobic degradation. TBP, TCEP and TBEP were detected in ground water influenced predominantly by bank-filtered water. This demonstrates a transport of organic compounds by river water infiltration to ground water. TBP, TCEP and TBEP were also detected in rain water precipitation, roof runoff and ground water predominantly influenced by rain water infiltration. This hints to an input of these compounds to ground water by dry and wet deposition after atmospheric transport. Organophosphate esters were also detected in parts of the aquifer at 21 m depth. This demonstrates low anaerobic degradation rates of TBP, TCEP and TBEP.  相似文献   

4.
A biomonitoring study was conducted to investigate the responses of plants exposed to power plant emission in a dry tropical environment. For this purpose, five sampling sites were selected in the prevailing wind direction (NE) at different distance to thermal power plant (TPP) within 8.0 km range and a reference site was selected in eastern direction at a distance of 22.0 km. The two most common tree species, Ficus benghalensis L. (Evergreen tree) and Dalbergia sisso Roxb. (deciduous tree) were selected as test plants. Ambient sulphur dioxide (SO(2)), nitrogen dioxide (NO(2)), suspended particulate matter (SPM), respirable suspended particulate matter (RSPM), dust-fall rate (DFR) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b and carotenoids), ascorbic acid, sugar and sulphate-sulphur (SO4(2-)-S) contents were measured. Ambient SO(2), NO(2), SPM, RSPM and DFR showed significant spatial and temporal variation at different sites. Considerable reduction in pigment (chlorophyll a, chlorophyll b and carotenoids) and sugar contents were observed at sites receiving higher pollution load. Ascorbic acid exhibited significant positive correlation with pollution load. Accumulation of SO4(2-)-S in leaf tissue showed significant positive correlation with ambient SO(2) concentration at all the sites. At the same time, SO4(2-)-S showed significant negative correlation with pigment and sugar content. D. sisso Roxb. tree was found to be more sensitive as compared to F. benghalensis L. tree.  相似文献   

5.
Total suspended particulate (TSP) samples were collected during wintertime from November 24, 1998 to February 12, 1999 in Beijing. Ionic species including Cl-, NO3(-), SO4(2-), Na+, NH4(+), K+, Mg2+ and Ca2+ were determined by Ion Chromatography (IC). The sum average concentration of all the determined ions accounted for 18.9% of the TSP concentration, and SO4(2-) appeared the dominant ion with an average concentration of 30.84 microg m(-3); the sum mass concentration of SO4(2-), NO3(-), Ca2+ and NH4(+) accounted for about 83.2% of all the eight ions measured. The study indicated that the chemical form of sulfate and ammonium varies with TSP concentration levels. During heavy pollution periods, the average TSP concentration was 0.66 mg m(-3), and the NH4(+)/SO4(2-) molar ratio was low (0.58). It indicated that sulfate may present as CaSO4 and (NH4)2SO4 x CaSO4 x 2H2O. When TSP concentration (average 0.186 mg m(-3)) was relatively low, the NH4(+)/SO4(2-) molar ratio was 1.94, close to the theoretical ratio of 2 of (NH4)2SO4. Under this condition (NH4)2SO4 is expected to exist as the major form of sulfate. When the TSP concentration level was medium (average 0.35 mg m(-3)), the NH4+/SO4(2-) molar ratio appeared an average value (1.27), (NH4)2SO4, (NH4)2SO4 x CaSO4 x 2H2O and CaSO4 are expected to be present in those aerosol particles. Meteorological conditions including wind speed and wind direction were related to the TSP concentration level.  相似文献   

6.
Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required for modelling contaminant loads from impermeable surfaces.  相似文献   

7.
Changes in chemical speciation of copper and the capacity of concrete pavement to retain copper in runoff water from external buildings have been investigated at urban field conditions, and in parallel laboratory experiments simulating outdoor scenarios. The research study showed the concrete surface to form a copper rich surface layer (≈50 μm thick) upon exposure, and a high capacity to significantly reduce the bioavailable fraction of released copper (20–95%). The retention capacity of copper varied between 5 and 20% during single runoff events in the laboratory, and between 10 and 40% of the total copper release during single natural runoff events. The capacity to retain and reduce the bioavailable fraction of non-retained copper increased with increasing wetness of the concrete surfaces, increasing pH of the runoff water and decreasing flow rates. Bioassay testing with bacterial and yeast bioreporters showed the bioavailable fraction of non-retained copper to be significantly lower than the total copper concentration in the runoff water, between 22 and 40% for bacteria and between 8 and 31% for yeast. The application of generated data to simulate a fictive outdoor scenario, suggests a significant reduction of bioavailable and total copper to background values during environmental entry as a result of dilution, and the interaction with solid surfaces, organic matter and complexing agents already in the drainage system.  相似文献   

8.
In this work we present the results of extensive characterization and optimization of the Ambient Ion Monitor-Ion Chromatograph (AIM-IC) system, an instrument developed by URG Corp. and Dionex Inc. for simultaneous hourly measurements of the water-soluble chemical composition of atmospheric fine particulate matter (PM(2.5)) and associated precursor gases. The sampling assembly of the AIM-IC consists of an inertial particle size-selection assembly, a parallel-plate wet denuder (PPWD) for the collection of soluble gases, and a particle supersaturation chamber (PSSC) for collection of particles, in series. The analytical assembly of the AIM-IC consists of anion and cation IC units. The system detection limits were determined to be 41 ppt, 5 ppt, and 65 ppt for gas phase NH(3(g)), SO(2(g)), and HNO(3(g)) and 29 ng m(-3), 3 ng m(-3), and 45 ng m(-3) for particle phase NH(4)(+), SO(4)(2-), and NO(3)(-) respectively. From external trace gas calibrations with permeation sources, we determined that the AIM-IC is biased low for NH(3(g)) (11%), SO(2(g)) (19%), and HNO(3(g)) (12%). The collection efficiency of SO(2(g)) was found to strongly depend on the composition of the denuder solution and was found to be the most quantitative with 5 mM H(2)O(2) solution for mixing ratios as high as 107 ppb. Using a cellulose membrane in the PPWD, the system responded to changes in SO(2(g)) and HNO(3(g)) within an hour, however for NH(3(g)), the timescale can be closer to 20 h. With a nylon membrane, the instrument response time for NH(3(g)) was significantly improved, becoming comparable to the responses for SO(2(g)) and HNO(3(g)). Performance of the AIM-IC for collection and analysis of PM(2.5) was evaluated by generating known number concentrations of ammonium sulfate and ammonium nitrate particles (with an aerodynamic diameter of 300 nm) under laboratory conditions and by comparing AIM-IC measurements to measurements from a collocated Aerosol Mass Spectrometer (AMS) during a field-sampling campaign. On average, the AIM-IC and AMS measurements agreed well and captured rapid ambient concentration changes at the same time. In this work we also present a novel inlet configuration and plumbing for the AIM-IC which minimizes sampling inlet losses, reduces peak smearing due to sample carryover, and allows for tower-height sampling from the base of a research tower.  相似文献   

9.
A field campaign on aerosol chemical properties and trace gases measurements was carried out along the Delhi-Hyderabad-Delhi road corridor (spanning about 3,200 km) in India, during February 1-29, 2004. Aerosol particles were collected on quartz and cellulose filters using high volume (PM(10)) sampler at various locations along the route (i.e., urban, semi-urban, rural, and forest areas) and have been characterized for major cations (Na(+), Ca(2+), Mg(2+), K(+), and NH (4) (+)), anions (Cl(-), NO (3)(-), and SO (4)(2-)), and heavy metals (Cu, Cd, Fe, Zn, Mn, and Pb). Simultaneously, we measured NO(2) and SO(2) gases. These species show large spatial and temporal variations. The ambient PM(10) concentration has been observed to be the highest (55 ± 4 μg m(-3)) near semi-urban areas followed by forest areas (48 ± 2 μg m(-3)) and in rural areas (44 ± 22 μg m(-3)). The concentrations of NO( x ) (NO(2)+NO) and SO(2) ranged from 16 to 69 μg m(-3) and 4 to 11 μg m(-3), respectively. Among anions, NO(3)(-) and SO(4) (2-) are the major constituents of PM(10). The urban and semi-urban sites showed enhanced concentrations of Fe, Zn, Mn, Cd, and Pb. This study provide information about atmospheric concentrations of various species in the northern to central India, which may be important for policy makers to better understand the air quality of the region.  相似文献   

10.
A major Irish study, based upon more than 8000 samples collected over the measurement period of 22 years, for sulfur dioxide (SO2-S), sulfate (SO4-S) and nitrogen dioxide (NO2-N) concentrations (microg m(-3)) within air, and the ionic composition of precipitation samples based on sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulfate (SO4-S), non-sea salt sulfate (nssSO4-S), ammonium (NH4-N), and nitrate (NO3-N) weighted mean concentrations (mg l(-1)), has been completed. For the air samples, the sulfur dioxide and sulfate concentrations decreased over the sampling period (1980-2004) by 75% and 45%, respectively, whereas no significant trend was observed for nitrogen dioxide. The highest concentrations for sulfur dioxide, sulfate and nitrogen dioxide were associated with wind originating from the easterly and northeasterly directions i.e. those influenced by Irish and European sources. The lowest concentrations were associated with the westerly directions i.e. for air masses originating in the North Atlantic region. This was further verified with the use of backward (back) trajectory analysis, which allowed tracing the movement of air parcels using the European Centre for Medium range Weather Forecasting (ECMWF) ERA-40 re-analysis data. High non-sea salt sulfate levels were being associated with air masses originating from Europe (easterlies) with lower levels from the Atlantic (westerlies). With the precipitation data, analysis of the non-sea salt sulfate concentrations showed a decrease by 47% since the measurements commenced.  相似文献   

11.
The Bear Brook Watershed Manipulation project in Maine is a paired calibrated watershed study funded by the U. S. EPA. The research program is evaluating whole ecosystem response to elevated inputs of acidifying chemicals. The project consists of a 2.5 year calibration period (1987-1989), nine years of chemical additions of (NH4)2SO4 (15N- and 34S-enriched for several years) to West Bear watershed (1989-1998), followed by a recovery period. The other watershed, East Bear, serves as a reference. Dosing is in six equal treatments/yr of 1800 eq SO4 and NH4/ha/yr, a 200% increase over 1988 loading (wet plus dry) for SO4 and 300% for N (wet NO3 + NH4). The experimental and reference watersheds are forested with mixed hard- and softwoods, and have thin acidic soils, areas of 10.2 and 10.7 ha, and relief of 210 m. Thin till of variable composition is underlain by metasedimentary pelitic rocks and calc-silicate gneiss intruded by granite dikes and sills. For the period 1987-1995, precipitation averaged 1.4 m/yr, had a mean pH of 4.5, with SO4, NO3, and NH4 concentrations of 26, 14, and 7 eq/L, respectively. The nearly perrenial streams draining each watershed have discharges ranging from 0 (East Bear stops flowing for one to two months per year) to 150 L/sec. Prior to manipulation, East Bear and West Bear had a volume weighted annual mean pH of approximately 5.4, alkalinity = 0 to 4 eq/L, total base cations = 184 eq/L (sea-salt corrected = 118 eq/L), and SO4 = 100 to 111 eq/L. Nitrate ranged from 0 to 30 eq/L with an annual mean of 6 to 25 eq/L; dissolved organic carbon (DOC) ranged from 1 to 7 mg/L but was typically less than 3. Episodic acidification occurred at high discharge and was caused by dilution of cations, slightly increased DOC, significantly higher NO3, and the sea-salt effect. Depressions in pH were accompanied by increases in inorganic Al. The West Bear catchment responded to the chemical additions with increased export of base cations, Al, SO4, NO3, and decreased pH, ANC, and DOC. Silica remained relatively constant. Neutralization of the acidifying chemicals occurred dominantly by cation desorption and mobilization of Al.  相似文献   

12.
Venerid clam, Paphia malabarica Chemnitz, is the commercially exploited species distributed exclusively in Vembanad Lake and Ashtamudi estuary, along the south west coast of India. In this study, the survival rate and development of P. malabarica larvae were studied for 3 days in ambient salinity (33), copper (2.5 microg Cu2+ l(-1)), reduced salinities (25 and 20) and a combination of copper in low salinities. No significant differences were found in larval development between treatments. The survival rates decreased considerably with low salinities although the combination of copper and low salinity gave synergistic effects. The reduced survival in low salinities would limit population growth of this species in estuarine areas experiencing low salinities and also explains the absence of larval settlement on habitats close to harbors or river mouths.  相似文献   

13.
Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.  相似文献   

14.
Nitrous oxide (N(2)O) fluxes were measured in six littoral mirco-zones of Lake Huahu on Qinghai-Tibetan Plateau in the peak growing season of years of 2006 and 2007. The weighted mean N(2)O flux rate was 0.08 mg N m(-2) h(-1) (ranged from -0.07 to 0.35 mg N m(-2) h(-1)). The result was relatively high in the scope of N(2)O fluxes from boreal and temperate lakes. Emergent plant zones (Hippuris vulgaris and Glyceria maxima stands) recorded the highest N(2)O flux rate (0.11 ± 0.24 and 0.08 ± 0.17 mg N m(-2) h(-1), respectively). Non-vegetated lakeshore recorded the lowest N(2)O flux (0.03 ± 0.11 mg N m(-2) h(-1)), lower than that from the floating mat zone of Carex muliensis (0.05 ± 0.18 mg N m(-2) h(-1)), the floating-leaved plant zone of Polygonum amphibium (0.07 ± 0.11 mg N m(-2) h(-1)), and the wet meadow (0.07 ± 0.15 mg N m(-2) h(-1)). Standing water depths were important factors to explain such spatial variations in N(2)O fluxes. Significant temporal variations in N(2)O fluxes were also found. Such temporal variation in N(2)O flux in the littoral zone may be dependent on the interaction of water regime and thermal conditions, instead of the latter solely. These results showed the importance of the littoral zone of lake, especially the emergent plant zone, as a hotspot of N(2)O fluxes in such grazing meadows.  相似文献   

15.
Al, Cd, Cr, Cu, Fe, Mn, Pb, Zn, NH4+, Mg2+, Ca2+, Na+, K+, Cl-, NO3- and SO4(2-), along with pH were determined in wet and dry deposition samples collected at Al-Hashimya, Jordan. Mean trace metal concentrations were similar or less than those reported for other urban regions worldwide, while concentrations of Ca2+ and SO4(2-) were the highest. The high Ca2+ concentrations were attributed to the calcareous nature of the local soil and to the influence of the Saharan dust, while the high concentrations of SO4(2-) were attributed to the influence of anthropogenic sources and Saharan dust soil. Except for SO4(2-), NO3-, and Ca2+, dry deposition fluxes of measured metals and ions were higher than their corresponding wet deposition fluxes. The high annual average pH values recorded for wet and dry deposition samples were attributed to the neutralization of acidity by alkaline species. Cd, Cr, Cu, Pb, Zn, NO3- and SO4(2-) were enriched in wet and dry deposition samples relative to crustal material, and a significant anthropogenic contribution to these elements and ions is tentatively suggested. Finally, the possible sources and the main factors affecting the concentrations of the measured species are discussed.  相似文献   

16.
In order to estimate wet deposition atmospheric fluxes of macro-nutrients into the eastern Mediterranean coastal waters, soluble inorganic phosphate (PO4(3-)), nitrate (NO3-) and nitrite (NO2-) concentrations in precipitation (from February 1996 to June 1997) have been measured at a coastal sampling site, Erdemli, Turkey. Water-soluble inorganic PO4(3)-P, a reactive, bioavailable, limiting macro-nutrient in the oligotrophic waters of the eastern Mediterranean was studied with respect to its contribution to biological productivity. Reactive PO4(3-)-P and NO2(-) + NO3(-)-N concentrations were found to be highly variable in rainwater samples. One of the aims of the study was to determine the contribution of dust transport to the soluble macro-nutrient budget of the eastern Mediterranean. No differences were found between the mean reactive P and NO(2-) + NO3(-)-N concentrations of "red rain" and normal rain events. Most likely as a result of low solubility of crustal phosphorus, dust episodes were not found to be important sources of reactive P, in terms of wet deposition. The annual wet deposition fluxes of reactive PO4(3-)-P and NO2(-) + NO3(-)-N into the Cilician Basin were respectively estimated to be 0.010 g P m(-2) per year and 0.23 g N m(-2) per year, which are comparable to the fluxes from land-based sources in the north-eastern Mediterranean. The incorporation of water soluble bioavailable PO4(3-)-P and NO2(-) + NO3(-)-N delivered via atmospheric wet deposition could be responsible for approximately 3.3% (0.40 g C m(-2) per year) and 11.0% (1.31 g C m(-2) per year) respectively, of the mean annual new production in the north-eastern Mediterranean.  相似文献   

17.
Atmospheric concentrations of nitric acid (HNO3), sulfur dioxide (SO2), particulate nitrate and particulate sulfate on the urban- and mountain-facing sides of Mt. Gokurakuji were measured from November 2002 to October 2003, in order to evaluate the effects of anthropogenic activity on air quality and dry deposited nitrate and sulfate on the surfaces of pine foliage. The results showed that HNO3, SO2 and concentrations were significantly higher (P < 0.05) on the urban-facing side (1.54, 2.48 and 0.65 μg m−3, respectively) than the mountain-facing side (0.67, 1.19 and 0.37 μg m−3, respectively), while concentrations did not differ significantly between the two sides (urban-facing: 2.80 μg m−3; mountain−facing: 2.05 μg m−3). Indirect estimates of dry deposition rates of nitrate and sulfate to the surfaces of pine foliage based on the measured concentrations approximately agreed with the measured values determined by the foliar rinsing technique in a previous study. It was found that HNO3 was the major source (approximately 80%) of dry deposited nitrate on pine foliage, while the contribution from was about equal to that from SO2. In conclusion, HNO3 and SO2 appear to be dominant species reflecting higher dry deposition rates of nitrate and sulfate on the urban-facing side compared to the mountain-facing side of Mt. Gokurakuji.  相似文献   

18.
The emission of nitrogen compounds from power plants accounts for a significant proportion of the total emissions of nitrogen to the atmosphere. This study seeks to understand the nature of chemical reactions in the atmosphere involving nitrogen, which is important in undertaking quantitative assessments of the contribution of such reactions to local and regional air pollution. The slant column density (SCD) of power-plant-generated NO(2) was derived using imaging differential optical absorption spectroscopy (I-DOAS) with scattered sunlight as a light source. The vertical structure of NO(2) SCD from power plant stacks was simultaneously probed using a pushbroom sensor. Measured SCDs were converted to mixing ratios in calculating the rate of NO(2) increase at the center of the plume. This study presents quantitative measurements of the rate of NO(2) increase in a rising plume. An understanding of the rate of NO(2) increase is important because SO(2) and NO(x) compete for the same oxidizing radicals, and the amount of NO(x) is related to the rates of SO(2) oxidation and sulfate formation. This study is the first to directly obtain the rate of NO(2) increase in power plant plumes using the I-DOAS technique. NO(2) increase rates of 60 and 70 ppb s(-1) were observed at distances of about 45 m from the two stacks of the Pyeongtaek Power Plant, northwest South Korea.  相似文献   

19.
A temporary renovation activity releases considerably high concentrations of particulate matter, viable and non-viable, into air. These pollutants are a potential contributor to unacceptable indoor air quality (IAQ). Particulate matter and its constituents lead, sulfate, nitrate, chloride, ammonium and fungi as well as fungal spores in air were evaluated in a building during renovation action. Suspended dust was recorded at a mean value of 6.1 mg m(-3) which exceeded the Egyptian limit values for indoor air (0.15 mg m(-3)) and occupational environments (5 mg m(-3)). The highest particle frequency (23%) of aerodynamic diameter (dae) was 1.7 microm. Particulate sulfate (SO(4)(2-)), nitrate (NO(3)(-)), chloride (Cl(-)), ammonium (NH(4)(+)) and lead components of suspended dust averaged 2960, 28, 1350, 100 and 13.3 microg m(-3), respectively. Viable fungi associated with suspended dust and that in air averaged 1.11 x 10(6) colony forming unit per gram (cfu g(-1)) and 92 colony forming unit per plate per hour (cfu p(-1) h(-1)), respectively. Cladosporium(33%), Aspergillus(25.6%), Alternaria(11.2%) and Penicillium(6.6%) were the most frequent fungal genera in air, whereas Aspergillus(56.8%), Penicillium(10.3%) and Eurotium(10.3%) were the most common fungal genera associated with suspended dust. The detection of Aureobasidium, Epicoccum, Exophiala, Paecilomyces, Scopulariopsis, Ulocladium and Trichoderma is an indication of moisture-damaged building materials. Alternaria, Aureobasidium, Cladosporium, Scopulariopsis and Nigrospora have dae > 5 microm whereas Aspergillus, Penicillium and Verticillium have dae < 5 microm which are suited to penetrate deeply into lungs. Particulate matter from the working area infiltrates the occupied zones if precautionary measures are inadequate. This may cause deterioration of IAQ, discomfort and acute health problems. Renovation should be carefully designed and managed, in order to minimize degradation of the indoor and outdoor air quality.  相似文献   

20.
In view of their sensitivity and importance, an ecological-economic analysis of wetlands has been carried out for various Indian states. Subsequently, the ecological wealths of different zones (north, south, east and west) have been computed and compared. Amongst states, Karnataka (7896.5 million US dollars yr(-1)), Gujarat (7689.4 million US dollars yr(-1)) and Andhra Pradesh (7670.9 million US dollars yr(-1)) are found to be the richest, whereas Nagaland (3.1 million US dollars yr(-1)), Meghalaya (5.9 million US dollars yr(-1)) and Sikkim (15.9 million US dollars yr(-1)) turn out to be the poorest. Amongst different zones, Southern Zone turns out to be the richest and the Northern Zone poorest. A ratio called ANR [Artificial (A) Wetland Wealth to Natural (N) Wetland Wealth Ratio (R)] has also been devised, which is the ratio of the ecological-economic values of artificial and natural wetlands. In other words, this ratio indicates the level of environmental concern of a given region. ANR ratio is found to be the highest for Madhya Pradesh (564.1) and Karnataka (159.8) states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号