首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
ABSTRACT: The development of a nondegradation policy for high quality waters is a complex and often controversial process. This paper discusses the development of a nondegradation policy for two components of the National Wild and Scenic Rivers System. Water quality in these reaches of the Delaware River is threatened by rapid growth and development and the cumulative impacts from numerous wastewater discharges and nonpoint sources of pollution. The Delaware River Basin Commission, with assistance from its member states and the National Park Service, conducted a highly public, six-year planning process to develop a nondegradation policy that protected existing water quality without impinging upon local and state economic development objectives. The resulting non-degradation policy includes such features as numeric definitions of existing water quality and measurable change; stringent point source requirements; nonpoint source requirements including watershed planning requirements; and other water quality management policies.  相似文献   

2.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

3.
Environmental threats and progressive degradation of natural resources are considered critical impediments to sustainable development. This paper reports on a participatory impact assessment of alternative soil and water conservation (SWC) scenarios in the Oum Zessar watershed, Tunisia. The first objective was to assess the impact of three SWC scenarios on key social, economic and environmental land use functions. The second objective was to test and evaluate the applicability of the 'Framework for Participatory Impact Assessment (FoPIA)' for assessing scenario impacts in the context of a developing country, in this case Tunisia. The assessed scenarios included: the originally planned SWC policy implementation at 85 % coverage of arable land of the watershed, the current implementation (70 %), and a hypothetical expansion of SWC measures to the entire watershed (100 %). Our results suggest that implementation of the SWC policy at 100 % coverage of arable land achieves the maximum socioeconomic benefit. However, if stakeholders' preferences regarding land use functions are taken into account, and considering the fact that the implementation of SWC measures also implies some negative changes to traditional landscapes and the natural system, SWC implementation at 85 % coverage of arable land might be preferable. The FoPIA approved to be a useful tool for conducting a holistic sustainability impact assessment of SWC scenarios and for studying the most intriguing sustainability problems while providing possible recommendations towards sustainable development. We conclude that participatory impact assessment contributes to an enhanced regional understanding of key linkages between policy effects and sustainable development, which provides the foundation for improved policy decision making.  相似文献   

4.
Agricultural nonpoint source pollution remains a persistent environmental problem, despite the large amount of money that has been spent on its abatement. At local scales, agricultural best management practices (BMPs) have been shown to be effective at reducing nutrient and sediment inputs to surface waters. However, these effects have rarely been found to act in concert to produce measurable, broad-scale improvements in water quality. We investigated potential causes for this failure through an effort to develop recommendations for the use of riparian buffers in addressing nonpoint source pollution in Wisconsin. We used frequency distributions of phosphorus pollution at two spatial scales (watershed and field), along with typical stream phosphorus (P) concentration variability, to simulate benefit/cost curves for four approaches to geographically allocating conservation effort. The approaches differ in two ways: (1) whether effort is aggregated within certain watersheds or distributed without regard to watershed boundaries (dispersed), and (2) whether effort is targeted toward the most highly P-polluting fields or is distributed randomly with regard to field-scale P pollution levels. In realistic implementation scenarios, the aggregated and targeted approach most efficiently improves water quality. For example, with effort on only 10% of a model landscape, 26% of the total P load is retained and 25% of watersheds significantly improve. Our results indicate that agricultural conservation can be more efficient if it accounts for the uneven spatial distribution of potential pollution sources and the cumulative aspects of environmental benefits.  相似文献   

5.
This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements  相似文献   

6.
ABSTRACT: The state of Minnesota seeks to reduce phosphorus loading to the Minnesota River by 40 percent from current levels. Looking at one major watershed in the river basin, we examined the cost effectiveness of targeting versus not targeting specific practices or regions within a watershed for controlling nonpoint phosphorus pollution from agriculture. Integrating biophysical simulation results from current and alternative farming systems with production cost and return estimates enabled us to analyze this policy. Our results indicated it is more cost effective to reduce nonpoint pollution by targeting particular regions or practices in a watershed compared to not targeting. Specifically, producers farming on cropland susceptible to erosion in close proximity to water will appreciably reduce phosphorus nonpoint pollution loading potential by switching from conventional tillage to conservation tillage and by reducing phosphorus fertilization levels to those recommended by the state extension service. Efforts to target those producers in the Minnesota River Basin could reduce potential transaction costs and compensation from “takings” by approximately $50 million (74 percent) over not targeting.  相似文献   

7.
ABSTRACT: Activities such as agriculture, silviculture, and mining contribute nonpoint pollution to Alabama's streams through polluted runoff and excessive sedimentation. Highly erodible soils characteristic of the Choctawhatchee‐Pea Rivers watershed, combined with intense rainfall and land use practices, contribute large amounts of sediment to streams. Biological monitoring can reflect the acute impacts of pollutants as well as prolonged effects of habitat alteration, and development of biological criteria is important for the establishment of enforceable laws regarding nonpoint source pollution. Macroinvertebrates were collected from 49 randomly selected sites from first through sixth‐order streams in the Choctawhatchee‐Pea Rivers watershed and were identified to genus level. Thirty‐eight candidate metrics were examined, and an invertebrate community index (ICI) was calibrated by eliminating metrics that failed to separate impaired from unimpaired streams. Each site was scored with those metrics, and narrative scores were assigned based on ICI scores. Least impacted sites scored significantly lower than sites impacted by row crop agriculture, cattle, and urban land uses. Conditions in the watershed suggest that the entire area has experienced degradation through past and current land use practices. An initial validation of the index was performed and is described. Additional evaluations of the index are in progress.  相似文献   

8.
ABSTRACT: ArcView Nonpoint Source Pollution Modeling (AVNPSM), an interface between ArcView GIS and AGNPS (Agricultural Nonpoint Source Pollution Model) is developed in support of agricultural watershed analysis and nonpoint source pollution management. The interface is PC‐based and operates in a Windows environment. It consists of seven modules: AGNPS utility, parameter generator, input file processor, model executor, output visualizer, statistical analyzer, and land use simulator. Basic input data to the interface include: soil, digital elevation model, land use/cover, water features, climate, and information on management practices. Application of the AVNPSM to a sample watershed indicates that it is user friendly, flexible, and robust, and it significantly improves the efficiency of the nonpoint source pollution modeling process.  相似文献   

9.
Several environmental protection policies have been implemented to prevent soil erosion and nonpoint source (NPS) pollutions in China. After severe Yangtze River floods, the “conversion cropland to forest policy” (CCFP) was carried out throughout China, especially in the middle and upper reaches of Yangtze River. The research area of the current study is located in Bazhong City, Sichuan Province in Yangtze River watershed, where soil erosion and NPS pollution are serious concerns. Major NPS pollutants include nitrogen (N) and phosphorus (P). The objective of this study is to evaluate the long-term impact of implementation of the CCFP on stream flow, sediment yields, and the main NPS pollutant loading at watershed level. The Soil and Water Assessment Tool (SWAT) is a watershed environmental model and is applied here to simulate and quantify the impacts. Four scenarios are constructed representing different patterns of conversion from cropland to forest under various conditions set by the CCFP. Scenario A represented the baseline, i.e., the cropland and forest area conditions before the implementation of CCFP. Scenario B represents the condition under which all hillside cropland with slope larger than 25° was converted into forest. In scenario C and D, hillside cropland with slope larger than 15° and 7.5° was substituted by forest, respectively. Under the various scenarios, the NPS pollution reduction due to CCFP implementation from 1996–2005 is estimated by SWAT. The results are presented as percentage change of water flow, sediment, organic N, and organic P at watershed level. Furthermore, a regression analysis is conducted between forest area ratio and ten years’ average NPS load estimations, which confirmed the benefits of implementing CCFP in reducing nonpoint source pollution by increasing forest area in mountainous areas. The reduction of organic N and organic P is significant (decrease 42.1% and 62.7%, respectively) at watershed level. In addition, this study also proves that SWAT modeling approach can be used to estimate NPS pollutants’ impacts of land use conversions in large watershed.  相似文献   

10.
An economic analysis of nonpoint source pollution management was conducted for the Nansemond River and Chuckatuck Creek watersheds in Southeast Virginia. The potential effects of alternative public policies on farm income, land use, and pollution loadings were investigated. Regulatory programs could have quite different impacts depending on which pollutant is targeted. Cost-share rates greater than 50 percent would have little additional effect on pollution from crop enterprises, but would reduce pollution from livestock  相似文献   

11.
ABSTRACT: A fundamental problem in protecting surface drinking water supplies is the identification of sites highly susceptible to soil erosion and other forms of nonpoint source (NPS) pollution. The New York City Department of Environmental Protection is trying to identify erodible sites as part of a program aimed at avoiding costly filtration. New York City's 2,000 square mile watershed system is well suited for analysis with geographic information systems (GIS); an increasingly important tool to determine the spatial distribution of sensitive NPS pollution areas. This study used a GIS to compare three land cover sources for input into the Modified Universal Soil Loss Equation (MUSLE), a model estimating soil loss from rangeland and forests, for a tributary watershed within New York City's water supply system. Sources included both conventional data (aerial photography) and Landsat data (MSS and TM images). Although land cover classifications varied significantly across these sources, location-specific and aggregate watershed predictions of the MUSLE were very similar. We conclude that using Landsat TM imagery with a hybrid classification algorithm provides a rapid, objective means of developing large area land cover databases for use in the MUSLE, thus presenting an attractive alternative to photo interpretation.  相似文献   

12.
ABSTRACT: Since 1989, the government of Pierce County, Washington, has prepared four watershed action plans. The watersheds cover almost 800,000 acres and include about 600,000 residents and diverse land uses, from the city of Tacoma to Mount Rainier National Park. The primary purpose of these plans was to address water quality impacts from nonpoint sources of pollution and to protect beneficial uses of water. Pierce County has experienced problems such as shellfish bed closures and the Federal Clean Water Act Section 303(d) listing of local water bodies as a result of declining water quality. Pierce County achieved improvements by engaging diverse groups of stakeholders in generating solutions to nonpoint sources of water pollution through our watershed planning process. Using participatory methods borrowed from private industry, Pierce County was able to reach consensus, build trust, maximize participation, facilitate learning, encourage creativity, develop partnerships, shorten time frames for the planning processes, and increase the level of commitment participants had to implementing the plans. As a result, the earliest plans have a high rate of voluntary implementation. This indicates that the process and methodology used to develop watershed plans has a significant, if not critical, impact on their success.  相似文献   

13.
To reduce nonpoint source pollution from nutrient, chemical, and sediment runoff, a number of environmental policy standards have been proposed. Such standards could be used to reduce nonpoint source pollution from nutrient, chemical, and sediment runoff to impaired water bodies. State governments can use voluntary approaches to meet nonpoint source pollution reduction goals. However, the practices that lower net returns will not be voluntarily adopted by farmers. Crop rotations and tillage practices may help producers to comply with the environmental standards while minimizing losses in farm profits. This study compares runoff from crop rotation practices and conventional continuous row cropping systems in Mississippi. The results are compared for different tillage systems in order to examine robustness of results. Nutrient runoff and sediment runoff are simulated using the Erosion Productivity Impact Calculator (EPIC). Sensitivity analysis of the sediment and nitrate reductions at 15 percent, 25 percent, and 35 percent are conducted. Under these scenarios, net returns are optimized under environmental constraints, and the marginal cost of sediment reduction ranges from US$1.61 to US$9.63 per ton depending on soil conditions, while the corresponding nitrate and phosphorus reductions costs range from US$1.21 to US$7.08 per kg and from US$0.09 to US$31.91, respectively. The empirical results from this study indicate that a nitrate reduction policy is relatively less costly than a sediment reduction policy. The results also demonstrate the importance of geophysical conditions and policy costs, which vary across regions.  相似文献   

14.
Applying Ecological Risk Principles to Watershed Assessment and Management   总被引:6,自引:0,他引:6  
Considerable progress in addressing point source (end of pipe) pollution problems has been made, but it is now recognized that further substantial environmental improvements depend on controlling nonpoint source pollution. A watershed approach is being used more frequently to address these problems because traditional regulatory approaches do not focus on nonpoint sources. The watershed approach is organized around the guiding principles of partnerships, geographic focus, and management based on sound science and data. This helps to focus efforts on the highest priority problems within hydrologically-defined geographic areas. Ecological risk assessment is a process to collect, organize, analyze, and present scientific information to improve decision making. The U.S. Environmental Protection Agency (EPA) sponsored three watershed assessments and found that integrating the watershed approach with ecological risk assessment increases the use of environmental monitoring and assessment data in decision making. This paper describes the basics of the watershed approach, the ecological risk assessment process, and how these two frameworks can be integrated. The three major principles of watershed ecological risk assessment found to be most useful for increasing the use of science in decision making are (1) using assessment endpoints and conceptual models, (2) holding regular interactions between scientists and managers, and (3) developing a focus for multiple stressor analysis. Examples are provided illustrating how these principles were implemented in these assessments.  相似文献   

15.
The Cache River of southernmost Illinois is used as a case study for developing and demonstrating an approach to quantitatively link (1) national agricultural policy and global agricultural markets, (2) landowner's decisions on land use, (3) spatial patterns of land use at a watershed scale, and (4) hydrologic impacts, thus providing a basis to predict, under a certain set of circumstances, the environmental consequences of economic and political decisions made at larger spatial scales. The heart of the analysis is an estimation, using logistic regression, of the affect of crop prices and Conservation Reserve Program (CRP) rental rates on farmland owner's decisions whether to reenroll in the CRP or return to crop production. This analysis shows that reasonable ranges for crop prices (80%–150% of 1985–1995 values) and CRP rental rates (0–125% of 1985–1995 rates) result in a range of 3%–92% of CRP lands being returned to crop production, with crop prices having a slightly greater effect than CRP rental rates. Four crop price/CRP rental rate scenarios are used to display resulting land-use patterns, and their effect on sediment loads, a critical environmental quality parameter in this case, using the agricultural non point source (AGNPS) model. These scenarios demonstrate the importance of spatial pattern of land uses on hydrological and ecological processes within watersheds. The approach developed can be adapted for use by local governments and watershed associations whose goals are to improve watershed resources and environmental quality.  相似文献   

16.
Increasing concern about the problems caused by urban sprawl has encouraged development and implementation of smart growth approaches to land use management. One of the goals of smart growth is water resources protection, in particular minimizing the runoff impact of urbanization. To investigate the magnitude of the potential benefits of land use planning for water resources protection, possible runoff impacts of historical and projected urbanization were estimated for two watersheds in Indiana and Michigan using a long term hydrological impact analysis model. An optimization component allowed selection of land use change placements that minimize runoff increase. Optimizing land use change placement would have reduced runoff increase by as much as 4.9 percent from 1973 to 1997 in the Indiana study watershed. For nonsprawl and sprawl scenarios in the Michigan watershed for 1978 to 2040, optimizing land use change placement would have reduced runoff increase by 12.3 percent and 20.5 percent, respectively. The work presented here illustrates both an approach to assessing the magnitude of the impact of smart growth and the significant potential scale of smart growth in moderating runoff changes that result from urbanization. The results of this study have significant implications for urban planning.  相似文献   

17.
ABSTRACT: A stochastic programming framework is developed to evaluate the economic implications of reliability criteria and multiple effluent controls on nonpoint source pollution. An integrated watershed simulation model is used to generate probability distributions for agricultural effluents in surface and ground water resulting from agricultural practices. Results from the planning model indicate that reliability and multiple effluent constraints significantly increase the cost of nonpoint controls but the effects vary by control alternative. The analysis indicates that an evaluation of multiple water quality objectives can be an important planning tool for designing nonpoint source controls for innovative programs to promote cost-effective water quality regulation.  相似文献   

18.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

19.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

20.
Abstract: A principal contributor to soil erosion and nonpoint source pollution, agricultural activities have a major influence on the environmental quality of a watershed. Impact of agricultural activities on the quality of water resources can be minimized by implementing suitable agriculture land‐use types. Currently, land uses are designed (location, type, and operational schedule) based on field study results, and do not involve a science‐based approach to ensure their efficiency under particular regional, climatic, geological, and economical conditions. At present, there is a real need for new methodologies that can optimize the selection, design, and operation of agricultural land uses at the watershed scale by taking into account environmental, technical, and economical considerations, based on realistic simulations of watershed response. In this respect, the present study proposes a new approach, which integrates computational modeling of watershed processes, fluvial processes in the drainage network, and modern heuristic optimization techniques to design cost effective land‐use plans. The watershed model AnnAGNPS and the channel network model CCHE1D are linked together to simulate the sediment and pollutant transport processes. Based on the computational results, a multi‐objective function is set up to minimize soil losses, nutrient yields, and total associated costs, while the production profits from agriculture are maximized. The selected iterative optimization algorithm uses adaptive Tabu Search heuristic to flip (switching from one alternative to another) land‐change variables. USDA’s Goodwin Creek experimental watershed, located in Northern Mississippi, is used to demonstrate the capabilities of the proposed approach. The results show that the optimized land‐use design with BMPs using an integrated approach at the watershed level can provide efficient and cost‐effective conservation of the environmental quality by taking into account both productivity and profitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号