首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract: A drastic decline in the number of black rhinoceroses ( Diceros bicornis ), primarily as a result of poaching places this species in imminent danger of extinction. The remaining black rhinos are divided into small, isolated populations that are vulnerable to demographic extinction, disease epidemics, genetic drift and inbreeding. Some conservationists have suggested minimizing these threats by moving as many animals as possible from different isolated populations to a few safe "rhino sanctuaries." To examine the possible long-term genetic consequences of such a strategy, we focused our efforts on determining the level of genetic differences among the remaining black rhino populations by examining restriction fragment length polymorphisms of the rapidly evolving mitochondrial DNA molecule. The 23 black rhinos in our survey, including animals from three geographic regions and two named subspecies, showed very little mitochondrial DNA differentiation. Only 4 out of 18 restriction enzymes revealed any mtDNA polymorphism, and the average estimated percent sequence divergence between the four mtDNA genotypes observed as 0.17%. Mitochondrial DNA divergence between the two named subspecies, D. b. minor and D. b. michaeli , was estimated to be only 0.29%. These results indicate a very close genetic relationship among the black rhinos in our survey. Thus, the mitochondrial DNA data suggest that within national boundaries, the black rhino populations we sampled may be considered single populations for breeding purposes, which might increase the species' probability of survival.  相似文献   

2.
The demand for rhino horn has led to drastic declines in numbers of rhinos in Asia and Africa. Although all trade in rhino products has been illegal since the mid-1970s, a lucrative illegal market flourishes and poaching continues. Horn removal from African rhinos has been conducted in Zimbabwe, Namibia, and Swaziland to deter poaching. Regeneration of horns following dehorning has created the potential for a sustainable harvest of rhino horn through dehorning programs. Establishment of a regulated legal market for rhino horn has been suggested to help fund rhino conservation programs in African countries. However, evaluation of an economic harvest of rhino horn from dehorning programs has been limited because few data on rates and form of horn regeneration exist. Because rate of horn regeneration will determine the interval at which rhino horns could be harvested profitably, we measured horn regrowth for two white rhino (Ceratotherium simum) populations studied in Zimbabwe between 1991–1995. Measurements of horn sizes were collected before and after dehorning, and mass to volume relationships were calculated. Von Bertalanffy growth curves were used to model horn size and rates of horn regrowth relative to age. Adult males had larger horn bases (p < 0.001) and faster rates of horn regrowth than adult females. Regenerated horn mass for adult males (>1.3 kg/yr) was almost twice the mass of adult females. Based on an economic model for profit maximization, intervals for dehorning range from 1.16 to 1.51 years and vary with both sex and age. We suggest managers use these values as minimum dehorning intervals to balance profits with longer-term management goals. Rates of horn regeneration are likely to be less important than law enforcement in determining the efficacy of dehorning as a deterrent to rhino poaching.  相似文献   

3.
Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty‐one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within‐ and across‐taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. Selección de Múltiples Especies Paraguas para la Diversidad Funcional y Taxonómica para Representar la Biodiversidad Urbana  相似文献   

4.
Usefulness of the Umbrella Species Concept as a Conservation Tool   总被引:20,自引:0,他引:20  
Abstract:  In the face of limited funding, knowledge, and time for action, conservation efforts often rely on shortcuts for the maintenance of biodiversity. The umbrella species concept—proposed as a way to use species requirements as a basis for conservation planning—has recently received growing attention. We reviewed the literature to evaluate the concept's general usefulness. An umbrella species is defined as a species whose conservation is expected to confer protection to a large number of naturally co-occurring species. This concept has been proposed as a tool for determining the minimum size for conservation areas, selecting sites to be included in reserve networks, and setting minimum standards for the composition, structure, and processes of ecosystems. Among the species suggested as potential umbrellas, most are large mammals and birds, but invertebrates are increasingly being considered. Eighteen research papers, most of which were based on hypothetical reserves or conservation networks, have provided evaluations of umbrella species schemes. These show that single-species umbrellas cannot ensure the conservation of all co-occurring species because some species are inevitably limited by ecological factors that are not relevant to the umbrella species. Moreover, they provide evidence that umbrella species from a given higher taxon may not necessarily confer protection to assemblages from other taxa. On the other hand, multi-species strategies based on systematic selection procedures (e.g., the focal species approach) offer more compelling evidence of the usefulness of the concept. Evaluations of umbrella species schemes could be improved by including measures of population viability and data from many years, as well as by comparing the efficiency of the proposed scheme with alternative management strategies.  相似文献   

5.
Relationship between Population Size and Fitness   总被引:8,自引:1,他引:8  
Abstract:  Long-term effective population size, which determines rates of inbreeding, is correlated with population fitness. Fitness, in turn, influences population persistence. I synthesized data from the literature concerning the effects of population size on population fitness in natural populations of plants to determine how large populations must be to maintain levels of fitness that will provide adequate protection against environmental perturbations that can cause extinction. Integral to this comment on what has been done and what needs to be done, sThe evidence suggests that there is a linear relationship between log population size and population fitness over the range of population sizes examined. More importantly, populations will have to be maintained at sizes of >2000 individuals to maintain population fitness at levels compatible with the conservation goal of long-term persistence. This approach to estimating minimum viable population size provides estimates that are in general agreement with those from numerous other studies and strengthens the argument that conservation efforts should ultimately aim at maintaining populations of several thousand individuals to ensure long-term persistence.  相似文献   

6.
To slow the impending loss of wild black ( Diceros bicornis ) and white ( Ceratotherium simum ) rhinos, three African countries have resorted to dehorning, a practice designed to remove the incentive for poachers to kill the hornless animals. The efficacy of this controversial conservation action remains unknown, in part because much uncertainty exists about the functional significance of rhino horns. We assessed the current utility of horns in Namibian black rhinos from phenotypically altered and intact populations in the Namib Desert, and we collated data on mortal fighting among horned females living in Etosha National Park. Infant mortality was 100% when dehorned mothers were sympatric with spotted hyenas ( Crocuta crocuta ). In contrast, infant survival was 100% for both horned mothers living with hyenas and occasional lions ( Panthera leo ) and 100% for dehorned mothers in the absence of dangerous carnivores. These data suggest that female horns can have direct fitness benefits in terms of calf survival. However, because lethal wounding due to fighting may account for up to 33% of the mortality of horned females, dehorning may improve adult survivorship. Our results (1) suggest that, where the aim of conservation programs is to improve population viability through juvenile recruitment, dehorning is unlikely to be a prudent strategy if practiced in areas with dangerous predators, and (2) illustrate the value of experimental approaches to onerous problems in conservation.  相似文献   

7.
The Japanese National Biodiversity Strategy 2010 calls for the creation of ecological networks as a biodiversity conservation policy. However, there is an obvious lack of information on the spatial distribution of many species and a lack of scientific methods for examining habitat requirements to establish the need for constructing these networks for target species. This study presents a quantitative method for assessing the need for ecological networks through modeling the potential geographic distributions of species based on a case study of local populations of Asiatic black bear (Ursus thibetanus japonicus) in Fuji and Tanzawa, Japan. A total of 1541 point records of occurrences of Asiatic black bears and 11 potential predictors were analyzed in a GIS environment. After a predictive distributional map was obtained using the Maximum Entropy (MaxEnt) algorithm, a gap analysis was carried out and population size was estimated. Approximately 24% of the bear's predicted habitat area fell within a wildlife protection area, 2% within a nature reserve, and 37% within natural parks. Conservation forest comprised 54% of the total area of predicted habitat; of this, national forest comprised 2%, and private and communal forest comprised 37%. The total estimated Asiatic black bear population in this region was 242, with 179 individuals in the Fuji local population, 26 in the Tanzawa local population, and 37 in the corridor patch between the two local populations. Our study also found a potential corridor connecting the Fuji and Tanzawa local populations, as well as potential habitat corridors in the Fuji region containing subpopulations on Mt. Fuji (119 individuals) and Mt. Kenashi (53 individuals). An additional subpopulation on Mt. Ashitaka (7 individuals) is isolated and not fully protected by a zoning plan. Mt. Furo's subpopulation is considered to be almost extinct, although black bears were observed here until 2002 based on the report by Mochizuki et al. (2005). The total black bear population of the Fuji-Tanzawa region is considered to be “endangered”; thus, an adequate population size might be difficult to maintain even if this region were to be internally connected by means of an ecological network.  相似文献   

8.
Minimum viable densities have rarely been determined directly. Theoretical analyses, based on empirical relationships between average mammal densities, suggest that minimum densities of viable populations are lower for larger mammals. This suggestion has been cast into doubt by other field studies showing populations of small insects and birds at very low densities. We collected 143 of the closest approximations of minimum viable density available, those of minimal, rare, and endangered mammal populations. We found that minimal density decreases as the −0.68 power of body mass. Minimal densities of small mammals are 1000 times those of the largest species. The correlation between minimum viable population density and body mass is negative in the majority of the mammalian taxonomic orders. Although minimum density is, on average, 10% of mean population density, viable population densities of herbivores are 13 times those of carnivores and insectivores. Populations in the wet tropics can apparently sustain themselves at densities much lower than those in temperate climates.  相似文献   

9.
Because of continued habitat destruction and species extirpations, the need to use captive breeding for conservation purposes has been increasing steadily. However, the long-term demographic and genetic effects associated with releasing captive-born individuals with varied life histories into the wild remain largely unknown. To address this question, we developed forward-time, agent-based models for 4 species with long-running captive-breeding and release programs: coho salmon (Oncorhynchus kisutch), golden lion tamarin (Leontopithecus rosalia), western toad (Anaxyrus boreas), and Whooping Crane (Grus americana). We measured the effects of supplementation by comparing population size and neutral genetic diversity in supplemented populations to the same characteristics in unaltered populations 100 years after supplementation ended. Releasing even slightly less fit captive-born individuals to supplement wild populations typically resulted in reductions in population sizes and genetic diversity over the long term when the fitness reductions were heritable (i.e., due to genetic adaptation to captivity) and populations continued to be regulated by density-dependent mechanisms over time. Negative effects for species with longer life spans and lower rates of population replacement were smaller than for species with shorter life spans and higher rates of population replacement. Programs that released captive-born individuals over fewer years or that avoided breeding individuals with captive ancestry had smaller reductions in population size and genetic diversity over the long term. Relying on selection in the wild to remove individuals with reduced fitness mitigated some negative demographic effects, but at a substantial cost to neutral genetic diversity. Our results suggest that conservation-focused captive-breeding programs should take measures to prevent even small amounts of genetic adaptation to captivity, quantitatively determine the minimum number of captive-born individuals to release each year, and fully account for the interactions among genetic adaptation to captivity, population regulation, and life-history variation.  相似文献   

10.
Population indices based on visits to detection stations commonly are used to monitor wildlife populations. Inferences about populations are based on 1 of 2 measures: (1) change in the proportion of stations visited at least once or (2) change in the cumulative number of visits by unique individuals. The functional relationships between index responses and population density is poorly understood and can lead to misinterpretation of index data when an incorrect functional relationship (e.g. linear) is assumed. We created a flexible simulation environment to study the response of detection-based population indices under a wide variety of conditions meant to reflect species life history and study design. Proportional indices exhibited non-linear saturating responses to changes in population density while cumulative indices responded linearly. Shapes of responses were functions of home range sizes, individual detection probabilities, and spatial arrangement of animals and sampling stations. Non-linear relationships of proportional indices lead to under-estimation of mean population density when data are aggregated from multiple detection stations deployed in a heterogeneous landscape. Cumulative indices have significant statistical advantages over proportional indices including smaller sample sizes required to detect density change, linearity, consistent index responses across a wide range of densities, and ability to aggregate data to meet minimum sample size requirements. Our simulation provides a flexible tool for the interpretation of station-based population indices.  相似文献   

11.
Focal Species: A Multi-Species Umbrella for Nature Conservation   总被引:31,自引:0,他引:31  
To prevent the further loss of species from landscapes used for productive enterprises such as agriculture, forestry, and grazing, it is necessary to determine the composition, quantity, and configuration of landscape elements required to meet the needs of the species present. I present a multi-species approach for defining the attributes required to meet the needs of the biota in a landscape and the management regimes that should be applied. The approach builds on the concept of umbrella species, whose requirements are believed to encapsulate the needs of other species. It identifies a suite of "focal species," each of which is used to define different spatial and compositional attributes that must be present in a landscape and their appropriate management regimes. All species considered at risk are grouped according to the processes that threaten their persistence. These threats may include habitat loss, habitat fragmentation, weed invasion, and fire. Within each group, the species most sensitive to the threat is used to define the minimum acceptable level at which that threat can occur. For example, the area requirements of the species most limited by the availability of particular habitats will define the minimum suitable area of those habitat types; the requirements of the most dispersal-limited species will define the attributes of connecting vegetation; species reliant on critical resources will define essential compositional attributes; and species whose populations are limited by processes such as fire, predation, or weed invasion will define the levels at which these processes must be managed. For each relevant landscape parameter, the species with the most demanding requirements for that parameter is used to define its minimum acceptable value. Because the most demanding species are selected, a landscape designed and managed to meet their needs will encompass the requirements of all other species.  相似文献   

12.
Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite‐inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid‐20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host‐density threshold and cost‐benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host–parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.  相似文献   

13.
Abstract: High mortality and poor recruitment in Acacia tree populations in many parts of the Middle East may result in loss of biodiversity. Human activities in recent decades have caused drastic changes in the water regime and the abundance of wild and domestic ungulates, which may negatively affect these trees. We studied the effects of large mammalian herbivores on the establishment of young Acacia raddiana and A. tortilis in the Arava Valley between the Red Sea and the Dead Sea, Israel. Seed accumulation under trees was high when large herbivores were excluded, and direct observations confirmed that ungulates were the main seed dispersers of these Acacia species. Insect seed predators (bruchid beetles) damaged more than 95% of seeds not consumed by ungulates. Seed germination was facilitated by gut passage through ungulates. Seedling survival was determined largely by water availability and was independent of herbivore density. Under present conditions, several years of high rainfall are necessary for successful establishment of young trees. Under severe browsing pressure by ungulates, growth in juvenile trees was delayed and smaller sizes were overrepresented. There was no evidence, however, of effects on the long-term demography of Acacia trees, perhaps because ungulates increased seedling densities by enhancing the viability and germination of seeds. We conclude that large mammalian herbivores are essential components of arid Acacia savannas and that wild and domestic ungulates must be included in future conservation plans.  相似文献   

14.
Helping a Species Go Extinct: The Sumatran Rhino in Borneo   总被引:1,自引:0,他引:1  
The Sumatran rhinoceros has been declining in numbers for more than a century, primarily due to bunting and to loss of its habitat as land is converted to other uses. Only in the last quarter century has the international community made concerted efforts to reverse this decline. However, government officials, international funding agencies, and conservation organizations, while paying lip service to the need for strong action, have often taken the path of least resistance in helping this species. Much of the money and effort put toward Sumatran rhino conservation has focused on new technologies or politically expedient strategies that have little to do with the real reasons behind the rhino's decline. The primary means of Sumatran rhino conservation in Indonesia and Malaysia, where viable populations might still exist, is still the capture and attempted breeding of this species-which, until now, has failed. I examined the history of the Sumatran rhino in Borneo and the recent situation in Sabah, where at least two important populations of this species might still survive. Sabah is presented as a case study that is indicative of the plight of the Sumatran rhino throughout its present range.  相似文献   

15.
Abstract: The umbrella‐species concept, which suggests that conservation strategies designed for one species may benefit co‐occurring species, has been promoted as a framework for conservation planning. Nevertheless, there has been considerable variation in the outcome of empirical tests of this concept that has led researchers to question its value, so we used data from 15 published studies in a meta‐analysis to evaluate whether conservation of putative umbrella species also conserves co‐occurring species. We tested the effectiveness of putative umbrella species categorized by taxonomic group, taxonomic similarity to co‐occurring species, body size, generality of resource use, and trophic level to evaluate criteria proposed to guide the selection of umbrella species. We compared species richness and number of individuals (by species and higher taxonomic group) between sites with and without putative umbrella species to test whether more co‐occurring species were present in greater abundances when the area or resource needs of umbrella species were met. Species richness and abundance of co‐occurring species were consistently higher in sites where umbrella species were present than where they were not and for conservation schemes with avian than with mammalian umbrella species. There were no differences in species richness or species abundance with resource generalist or specialist umbrella species or based on taxonomic similarity of umbrella and co‐occurring species. Taxonomic group abundance was higher in across‐taxonomic umbrella species schemes than when umbrella species were of the same taxon as co‐occurring species. Co‐occurring species had similar, or higher, species richness with small‐bodied umbrella species relative to larger‐bodied umbrella species. The only significant difference among umbrella species categorized by trophic level was that species richness was higher with omnivorous than it was with carnivorous avian umbrella species. Our results suggest there is merit to the umbrella‐species concept for conservation, but they do not support the use of the criteria we used to identify umbrella species.  相似文献   

16.
Conservation efforts often focus on umbrella species whose distributions overlap with many other flora and fauna. However, because biodiversity is affected by different threats that are spatially variable, focusing only on the geographic range overlap of species may not be sufficient in allocating the necessary actions needed to efficiently abate threats. We developed a problem-based method for prioritizing conservation actions for umbrella species that maximizes the total number of flora and fauna benefiting from management while considering threats, actions, and costs. We tested our new method by assessing the performance of the Australian federal government's umbrella prioritization list, which identifies 73 umbrella species as priorities for conservation attention. Our results show that the federal government priority list benefits only 6% of all Australia's threatened terrestrial species. This could be increased to benefit nearly half (or 46%) of all threatened terrestrial species for the same budget of AU$550 million/year if more suitable umbrella species were chosen. This results in a 7-fold increase in management efficiency. We believe nations around the world can markedly improve the selection of prioritized umbrella species for conservation action with this transparent, quantitative, and objective prioritization approach.  相似文献   

17.
We present new distibutional data for squamate reptiles (amphisbaenians, lizards, and snakes) from several Neotropical sites and estimate species (alpha) diversity at each site. Species compositions at all localities were used to estimate similarity in species richness within and between each of the major regions sampled: Central American lowland forests, Amazonia, and South American dryland forests. We used these estimates to derive maps summarizing overall regional patterns (beta diversity) of squamate richness. Both groups clearly reveal distinct faunal divisions among the three regions. Within Amazonia, lizards and snakes show a clear division in species composition between a "western edge" cluster of sites adjacent to eastern Andean slopes and all other localities in the central and eastern regions. Within this east-central block of sites, a further division is evident between localities north and south of the main Amazon River channel. These general regions of squamate similarity were qualitatively assessed in Brazil's portion of Amazonia within the context of the distribution of all state, federal, and Indian lands that are in principle afforded some level of protection and therefore offer potential for biodiversity conservation. We assess the potential for biodiversity conservation relative to the size of reserves needed to sustain populations of 500 individuals of the three largest species of snakes and to the distribution of potential conservation areas relative to the regional patterns of diversity identified by the statistical analysis. We conclude that the sizes and distributions of reserves are adequate to sustain viable populations of squamates if these areas can be counted on to play a major role in biodiversity conservation.  相似文献   

18.
Results from populations of insects and birds inhabiting Phragmites habitats were used to analyze effects of fragmentation. Flush-crash cycles of the stem-boring moth Archanara geminipuncta (Lepidoptera, Noctuidae) showed regionally concurrent, local extinctions despite an originally enormous population size (more than 180,000 adults), emphasizing the importance of metapopulation dynamics. Further, A. geminipuncta could be considered a keystone species, since shoot damage facilitated more than twenty species of herbivores, saprovores (of the caterpillars' feces), and their parasitoids. The gall midge Lasioptera arundinis could survive only in side shoots induced by shoot damage of A. geminipuncta .
Small Phragmites stands had thinner shoots (due to a water or nutrient deficiency) and shoots with more leaves (due to a better light supply) than large stands, thereby influencing species-specific demands for habitat suitability and nutritiousness of reed tissue. In other words significance of habitat fragmentation could not be assessed by area alone. For example, two chloropid flies depending on thin, yellowish shoots survived only in small habitats or in the unmown edges of large habitats.
Local persistence of Phragmites herbivores depended on much larger population sizes than could be expected from a population size sufficient to maintain genetic variation. At least 11,000 adults of the gall midge Giraudiella inclusa (or more than 84,000 galls) were necessary to avoid local extinction.
With regard to conservation management of reed habitats, nature reserves should consist of old and unmown reeds, have fewer disturbed (particularly, fewer mown) habitat edges, measure more than two hectares (priority should go to the largest remaining fragments), and be surrounded by nearby reed habitats providing reservoir populations and diverse shoot types.  相似文献   

19.
Abstract: Adaptive genetic variability within species is an essential component of biodiversity but has been largely ignored in studies aimed at assessing and predicting biodiversity of the forest environment. We used factorial regression and structuring models to test easily measured surrogates, such as ecological attributes, as predictors of adaptive genetic variation between populations of a tree species ( Eucalyptus delegatensis ). Adaptive variability was defined in terms of variation in average growth performance of 68 populations and of population-by-environment interaction across seven different environments. The best surrogates of genetic variability were measures of solar radiation and temperature range, each predicting more than 50% of the genetic variability within the species. Rock and understory types, when used either alone or in combination with other covariates, also were very efficient in discriminating between populations in groups showing similar adaptation. Significant relationships between particular surrogates and growth patterns of variation were attributed to effects of natural selection that had occurred in the population source locations. We recommend the development of studies focusing on the population level of biodiversity to improve the conservation of forest ecosystems in Australia.  相似文献   

20.
Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd‐infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post‐metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population‐level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号