共查询到20条相似文献,搜索用时 62 毫秒
1.
除草剂在土壤中的吸附行为研究 总被引:2,自引:0,他引:2
除草剂在土壤上的吸附和解吸行为是支配该除草剂在环境中的生物有效性和持久性的重要因素之一 ,同时对于预测除草剂在土壤和潜层水中的运动也是有重要作用。本文从吸附机理、实验技术、动力学、影响因素、常数的计算方法等方面阐述了除草剂在土壤中的吸附行为及其环境学意义。 相似文献
2.
除草剂在土壤中的吸附行为研究 总被引:8,自引:0,他引:8
叶常明 《环境污染治理技术与设备》2002,3(5):1-6
除草剂在土壤上的吸附和解吸行为是支配该除草剂在环境中的生物有效性和持久性的重要因素之一,同时对于预测除草剂在土壤和潜层水中的运动也是有重要作用。本文从吸附机理、实验技术、动力学、影响因素、常数的计算方法等方面阐述了除草剂在土壤中的吸附行为及其环境学意义。 相似文献
3.
以某涂料废水为研究对象,采用实验检测废水中BTEX浓度和模式计算挥发量相结合的研究方法,对BTEX污染物在污水处理过程中的迁移降解与去除途径进行研究,分析隔油、气浮、氧化沟工艺对苯系物去除效果,同时研究了吸附、挥发和生物降解3大去除途径对苯系物去除的影响。研究表明,该工艺对BTEX的去除效率高,苯的总去除效率为88.11%,甲苯、乙苯、邻二甲苯和间、对二甲苯总去除率分别高达98.14%、98.09%、97.45%和97.68%。其中苯、甲苯、乙苯、邻二甲苯主要都是在氧化沟中去除,间、对二甲苯在气浮池和氧化沟都有较高的去除率,隔油池工艺对BTEX的去除率较低。去除途径方面,苯以挥发为主,甲苯、乙苯和邻二甲苯都以生物降解为主要去除途径,而挥发和生物降解对间、对二甲苯的去除作用相当。 相似文献
4.
对异烟酸-吡唑啉酮光度法测定水和废水中氰化物的方法进行了改进。在不改变其它步骤的前提下,以去离子水代替二甲基甲酰胺所配制的吡唑啉酮溶液及异烟酸溶液作为显色剂。试验结果表明,改进后的新方法精密度RSD〈5%,加标回收率为92.0%~105.0%,通过电镀废水和标准样品的比对试验表明,改进后的方法与标准方法对同一样品的测定结果无显著性差异,满足监测分析要求。 相似文献
5.
为了研究天然土壤介质对苯胺的吸附、降解特征,选取了4种土壤、砂介质S2、S4、S5、S6,在实验室内进行批实验,实验表明:在无菌条件下,介质对苯胺主要表现为吸附,吸附过程满足假二级动力学方程,拟合相关系数R高达0.99以上;在土著微生物作用下,苯胺浓度下降较快,溶液中剩余苯胺随时间的变化可用一级反应动力学进行拟合,拟合系数R大于0.91,新鲜介质条件下浓度高达30 mg/L的苯胺最短半衰期仅为7.6 h,在60 h内可实现99.9%的去除,降解快慢与新鲜介质本身微生物的种类及数量有关。 相似文献
6.
7.
为了解生物炭应用于邻苯二甲酸酯污染土壤修复的可行性,选择邻苯二甲酸二甲酯作为目标污染物,以花生壳为原料制备生物炭,通过室内模拟试验研究生物炭对邻苯二甲酸二甲酯在土壤中自然降解和吸附行为的影响。结果表明,未添加与添加生物炭土壤中邻苯二甲酸二甲酯的自然降解过程均遵循一级动力学方程,生物炭含量0.5%和1.0%的土壤中邻苯二甲酸二甲酯的半衰期分别延长2.185 d和4.151 d,表明添加生物炭会不同程度地延缓土壤中邻苯二甲酸二甲酯的自然降解;在不同的生物炭含量水平下,土壤对邻苯二甲酸二甲酯的吸附均能很好地符合Freundlich方程所描述的规律,生物炭含量0.1%、0.5%和1.0%土壤的吸附常数Kf分别为35.647、45.830和57.649,显著高于对照土壤(7.793),表明土壤对邻苯二甲酸二甲酯的吸附作用随生物炭含量增加而显著增强。 相似文献
8.
9.
10.
11.
12.
Carolina Lourencetti Mary R. R. De Marchi Maria L. Ribeiro 《Journal of environmental science and health. Part. B》2013,48(10):949-958
This study reports the influence of sugar cane vinasse on the persistence, sorption and leaching potential of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) in both a clay and sandy soil from a tropical area of Brazil. The experiments were conducted out under controlled laboratory conditions. The addition of sugarcane vinasse to soil influenced the persistence and sorption of the herbicides in both the studied clay and sandy soils, with a considerable decrease in the diuron DT50 values in clay soil. The Ground Water Ubiquity Score (GUS) Index classifies the herbicides as leachers in both soils and treatments, with the exception of diuron, which is classified as a non-leacher in clay soil-vinasse and as a transient herbicide in sandy soil. These results suggest that special attention should be given to areas such as those where the sandy soil was collected in this study, which is a recharge area of the Guarani Aquifer and is likely to experience groundwater contamination due to the high leaching potential of the applied pesticides. 相似文献
13.
Neera Singh Shashi B. Singh 《Journal of environmental science and health. Part. B》2013,48(7):676-681
The effect of compost-amendment and moisture status on the persistence of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy) phenyl}-3-methoxyacrylate], a strobilurin fungicide, in two rice-growing soils was studied. Azoxystrobin is more sorbed in the silt loam (K f – 4.66) soil than the sandy loam (K f – 2.98) soil. Compost-amendment at 5 % levels further enhanced the azoxystrobin sorption and the respective K f values in silt loam and sandy loam soils were 8.48 and 7.6. Azoxystrobin was more persistent in the sandy loam soil than the silt loam soil. The half–life values of azoxystrobin in nonflooded and flooded silt loam soil were 54.7 and 46.3 days, respectively. The corresponding half–life values in the sandy loam soils were 64 and 62.7 days, respectively. Compost application enhanced persistence of azoxystrobin in the silt loam soil under both moisture regimes and half-life values in non–flooded and flooded soils were 115.7 and 52.8 days, respectively. However, compost enhanced azoxystrobin degradation in the sandy loam soil and half-life values were 59 (nonflooded) and 54.7 days (flooded). The study indicates that compost amendment enhanced azoxystrobin sorption in the soils. Azoxystrobin is more persistent in non-flooded soils than the flooded soils. Compost applications to soils had mixed effect on the azoxystrobin degradation. 相似文献
14.
P Leone M Nègre M Gennari V Boero R Celis J Cornejo 《Journal of environmental science and health. Part. B》2001,36(2):127-142
Adsorption of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was studied on two binary systems (ferrihydrite-humic acid) prepared by treating ferrihydrite (Fh) immediately after its precipitation with a soil humic acid (HA) at different loadings (4% and 8% HA content), and on a blank ferrihydrite sample prepared in the same way, but without HA addition. Imidazolinone adsorption on pure Fh and on the 4% Fh-HA decreased with increasing of the herbicide hydrophobicity (imazaquin相似文献
15.
16.
Mohammadkazem Ramezani Danielle P. Oliver Rai S. Kookana Gurjeet Gill Christopher Preston 《Journal of environmental science and health. Part. B》2013,48(2):105-112
The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled conditions. Hydrolysis, where it occurred, and photodegradation both followed first-order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Estimated half-lives for the three herbicides in solution in the dark were 6.5, 9.2 and 9.6 months for imazaquin, imazethapyr and imazapyr, respectively. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. Photodegradation of imazethapyr was the least sensitive to humic acids. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all herbicides was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Abiotic degradation of these herbicides is likely to be slow in the environment and is only likely to occur in clear water or on the soil surface. 相似文献
17.
Ramezani M Oliver DP Kookana RS Gill G Preston C 《Journal of environmental science and health. Part. B》2008,43(2):105-112
The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled conditions. Hydrolysis, where it occurred, and photodegradation both followed first-order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Estimated half-lives for the three herbicides in solution in the dark were 6.5, 9.2 and 9.6 months for imazaquin, imazethapyr and imazapyr, respectively. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. Photodegradation of imazethapyr was the least sensitive to humic acids. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all herbicides was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Abiotic degradation of these herbicides is likely to be slow in the environment and is only likely to occur in clear water or on the soil surface. 相似文献
18.
19.
Sharon A. Clay Kaitlynn K. Krack Stephanie A. Bruggeman Sharon Papiernik Thomas E. Schumacher 《Journal of environmental science and health. Part. B》2016,51(8):497-507
Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of 14C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices. 相似文献
20.
A. K. Alva Megh Singh C. A. Anderson 《Journal of environmental science and health. Part. B》2013,48(5):627-642
Abstract The sorption of bromacil and simazine by the surface soil (0–15 cm) sampled at various positions along an 8% slope citrus grove (Candler fine sand; Typic Quartzipsamment) and at various depths (0–200 cm) at upper, middle, and lower positions along the slope were investigated. The sorption of both herbicides by the top 15 cm soil decreased considerably from the upper to mid position along the slope and increased at the lower position. The organic matter content and concentrations of Ca, Mg, K, P, and Cu in the soil showed evidence of transport of organic matter and mineral nutrients from the mid position on the slope and accumulation in the lower position. The differential sorption of herbicides by the soil samples taken at various positions along the slope was closely related to changes in organic matter content. Although sorption of bromacil and simazine varied considerably at various positions along the slope, the sorption of bromacil was very similar at depths below 30 cm regardless of positions along the slope. In the case of simazine, however, the sorption was much greater at all depths in the lower than in the upper and mid position of the slope. The sorption of both herbicides decreased considerably at depths below 30 cm at all positions along the slope, thus, indicating the potential for rapid leaching of the herbicides down the soil profile. 相似文献