首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
改性膨润土处理酸性含铅废水   总被引:9,自引:0,他引:9  
探讨了用改性膨润土处理蓄电池厂酸性含铅废水的新工艺。实验结果表明,此法成本低、效果好且简便易行,并根据实验结果,为某蓄电池厂设计了一个酸性含铅废水的处理方案。  相似文献   

2.
染色废水吸附混凝效应研究   总被引:27,自引:0,他引:27  
用自制的酸性膨润土用无机混凝剂Al2(SO4)3联用处理含酸性红3B,弱酸橙GS和弱酸艳绿5G等染料的合成废水,以CDOCR去除率和脱色率来表征吸附的处理效果,结果表明,酸性膨润土和酸性膨润土-硫酸铝两种吸收混凝剂的废水处理效果无明显差异,其效率与染料种类有关,处理含5G绿废水的效果优于含GS橙和3B红废水。  相似文献   

3.
刘红  余薇  刘娟  徐文婷 《环境工程学报》2008,2(8):1040-1043
用氧化-絮凝耦合法处理酸性大红GR废水,以高锰酸钾为氧化剂、聚硅硫酸铁为絮凝剂,脱色率达到94.9%,COD去除率达到55.2%.通过用倒置式生物显微镜观察絮体,对反应机理进行推测.对高锰酸钾与酸性大红之间氧化还原反应产物和氧化-絮凝耦合处理的絮体进行紫外和红外吸收光谱扫描分析,探讨了氧化-絮凝耦合的反应历程和机理:酸性大红被高锰酸钾氧化成小分子有机物而脱色,还原产物新生态水合二氧化锰胶体吸附小分子有机物,并被聚硅硫酸铁卷裹成紧密絮体,氧化与絮凝之间产生协同作用,从而有效去除了色度和COD.  相似文献   

4.
以剩余污泥为吸附剂,研究其对模拟废水中酸性大红G的吸附条件及吸附机理。结果表明,剩余污泥对酸性大红G的吸附是一个快速过程,吸附时间可控制在30 min;其吸附过程同时受液膜扩散和颗粒内扩散的影响,可以用假二级动力学模型进行描述和预测;Freundlich方程可以较好地描述剩余污泥对酸性大红G的吸附行为。污泥未调pH时,对pH<2的溶液中酸性大红G的吸附性能良好;污泥pH为1时,对实验范围(pH<11)溶液中的酸性大红G均可有效吸附;污泥投加量增加,酸性大红G去除率升高,但污泥对酸性大红G的吸附量下降。  相似文献   

5.
前言 COD(化学耗氧量)是衡量水质污染程度的最重要的指标之一。常用J1S Kolol工业用水试验法中的酸性高锰酸钾法和重铬酸钾法进行测定。重铬酸钾法氧化力强,准确度好,但加热时间长,操作复杂。所以人们往往只好用酸性高锰酸钾法。此外,用重铬酸  相似文献   

6.
以城市污水处理厂的脱水污泥为原料,用Zn Cl2活化法制备污泥活性炭,并研究其对水中酸性红G的吸附、脱附行为。选取活化剂浓度、固液比、活化温度及活化时间等因素,通过正交实验确定了最佳工艺,即Zn Cl2浓度30%,固液比1∶2,碳化温度500℃,碳化时间1.5 h。吸附实验结果表明,该污泥活性炭对水中酸性红G的吸附量随着温度升高而增加,在15、25和35℃条件下的最大吸附量分别为153.6、165.6和180.4 mg/g,且吸附等温线能较好用Langmuir方程进行模拟。酸性红G在污泥活性炭上的吸附动力学符合准二级反应动力学模型。污泥活性炭对酸性红G的吸附量随着溶液p H的增大而减小,污泥活性炭的最佳投加量为0.26 g/L。吸附饱和的污泥活性炭可通过碱处理和热处理方法进行脱附,脱附后的吸附剂对酸性红G仍具有很强吸附性能。  相似文献   

7.
采用自制强酸性阳离子交换纤维对镉、铅离子的吸附性能进行了初步研究。实验结果表明 ,强酸性阳离子交换纤维对镉、铅离子具有较好的吸附能力 ,其最大吸附容量分别为 2 0 6.6mg g和 10 5 .5mg g ;吸附速度快 ,2 0min即可达到平衡。用Langmuir方程对其吸附等温线进行回归 ,结果显示实测值与理论方程具有较好的一致性  相似文献   

8.
通过对废水pH值、H2O2用量、催化剂用量、反应时间、反应温度等工艺条件的考察,确定了H2O2催化氧化处理酸性大红染料废水的最佳工艺条件pH 4、H2O2用量6 mL/L、催化剂用量3 g/L、反应时间100 min、反应温度70℃.在该条件下,COD和色度的去除率分别为76.7%和99.4%;通过反应前后的紫外-可见光光谱分析表明,H2O2催化氧化处理酸性大红GR染料废水有比较好的效果,为该工艺处理酸性大红GR染料废水提供了科学依据.  相似文献   

9.
粉煤灰处理煤矿酸性废水的研究   总被引:7,自引:0,他引:7  
采用石灰石中和沉淀,粉煤灰吸附处理煤矿酸性废水,取得了良好的效果。用石灰石调节pH至4.5,再用石灰中和至中性,并用粉煤灰吸附,粉煤灰用量为10g/L时处理效果较好。  相似文献   

10.
分别用层状氢氧化镁铝(LDH)和焙烧层状氢氧化镁铝(CLDH)作为吸附剂吸附脱除水溶液中偶氮染料酸性黑10B.考察了脱色时间、pH值、吸附剂的投加量、温度、染料初始浓度和焙烧温度等因素对脱色率的影响.结果表明,LDH及CLDH对酸性黑10B染料具有良好的脱除效果,室温下,10g/L LDH和1g/L的CLDH对浓度为100mg/L的染料的脱色率分别达95.93%和99.97%.pH值是影响吸附能力的关键因素,吸附剂对溶液pH值有一定缓冲作用.LDH及CLDH对酸性黑10B吸附结果符合Langmuir吸附等温式.饱和吸附后的LDH及CLDH用高温热解法再生,吸附性能良好,随再生次数增多,脱色率下降.  相似文献   

11.
Background, Aims and Scope The acidification of mine waters is generally caused by metal sulfide oxidation, related to mining activities. These waters are characterized by low pH and high acidity due to strong buffering systems. The standard acidity parameter, the Base Neutralization Capacity (BNC) is determined by endpoint titration, and reflects a cumulative parameter of both hydrogen ions and all buffering systems, but does not give information on the individual buffer systems. We demonstrate that a detailed interpretation of titration curves can provide information about the strength of the buffering systems. The buffering systems are of importance for environmental studies and treatment of acidic mining waters. Methods Titrations were carried out by means of an automatic titrator using acidic mining waters from Germany and Canada. The curves were interpreted, compared with each other, to endpoint titration results and to elemental concentrations contained therein. Results and Discussion The titration curves were highly reproducible, and contained information about the strength of the buffer systems present. Interpretations are given, and the classification and comparison of acidic mining waters, by the nature and strength of their buffering systems derived from titration curves are discussed. The BNC-values calculated from the curves were more precise than the ones determined by the standard endpoint titration method. Due to the complex buffer mechanisms in acidic mining waters, the calculation of major metal concentrations from the shape of the titration curve resulted in estimates, which should not be confused with precise elemental analysis results. Conclusion Titration curves provide an inexpensive, valuable and versatile tool, by which to obtain sophisticated information of the acidity in acidic water. The information about the strength of the present buffer systems can help to understand and document the complex nature of acidic mining water buffer systems. Finally, the interpretation of titration curves could help to improve treatment measurements and the ecological understanding of these acidic waters.  相似文献   

12.
Abstract

The purpose of this study is to evaluate what sources principally affect the chemical compositions in the catchment of the upper Nakdong River, South Korea where bedrock mostly consists of silicates as a natural factor. From October 7th to 9th, 2015, thirty-three water samples were collected, including samples from tributaries which run alongside mines. We analyzed the major anions, cations, trace elements and water isotopes of the samples and the analyzed data are divided into four groups by principle component analysis (PCA). We determined that most of the water samples are influenced by water-rock interactions when we consider the PCA results and the chemical weathering equation line. However, six samples have excess concentrations of sulfate and plot below the equation line. These samples were mostly from streams beside a zinc-cadmium smelter, which was also consistent with the PCA results. Samples near populated area could also be separated into a group via domestic pollution. Based on the PCA and chemical results, the chemical compositions of the river can be affected by two anthropogenic inputs: mine wastes and domestic contaminants.  相似文献   

13.
Mineralogical compositions and their spatial distributions are important initial conditions for reactive transport modeling. However, popular Kd-based "reactive" transport models only require contaminant concentrations in the pore fluids as initial conditions, and minerals implicitly represent infinite sources and sinks in these models. That situation results in a general neglect of mineralogical characterization in site investigations. This study uses a coupled multi-component reactive mass transport model to predict the natural attenuation of a ground water plume at a uranium mill tailings site in western USA. Numerous ground water geochemistry data are available at this site, but mineralogical data are sketchy. Even given the well-defined pore fluid chemistry, variations of secondary mineral species and mineral abundances in the aquifer resulted in significantly different modeling outcomes. Results show that the amount of calcite in the aquifer determines the distances of plume migration. The possible presence of jurbanite, an aluminum sulfate phase, can store acidity temporarily but cause more severe contamination on a later date. The surfaces of iron oxyhydroxides can store significant amounts of sulfate and protons and serve as a second source for prolonged contamination. These simulations under field conditions illustrate that mineralogical compositions are an essential requirement for accurate prediction of contaminant fate and transport.  相似文献   

14.
利用PFU原生动物群落监测铅锌尾矿人工湿地废水净化效能   总被引:8,自引:0,他引:8  
利用PFU原生物动群落监测铅锌尾矿人工湿地废水净化效能,并与水质的理化分析结果作比较,结果表明,PFU法和理化分析都证明宽叶香蒲人工湿对铅锌矿废水具有明显的净化能力原生物群落的种类数、密度、生物多样性指数、集群速度均能反映水质状况,其中生物多样性指数更能有效地评价水体质量。  相似文献   

15.
A newly developed reactive transport model was used to evaluate the potential effects of mine closure on the geochemical evolution in the aquifer downgradient from a mine site. The simulations were conducted for the K?nigstein uranium mine located in Saxony, Germany. During decades of operation, uranium at the former mine site had been extracted by in situ acid leaching of the ore underground, while the mine was maintained in a dewatered condition. One option for decommissioning is to allow the groundwater level to rise to its natural level, flooding the mine workings. As a result, pore water containing high concentrations of dissolved metals, radionuclides, and sulfate may be released. Additional contamination may arise due to the dissolution of minerals contained in the aquifer downgradient of the mine. On the other hand, dissolved metals may be attenuated by reactions within the aquifer. The geochemical processes and interactions involved are highly non-linear and their impact on the quality of the groundwater and surface water downstream of the mine is not always intuitive. The multicomponent reactive transport model MIN3P, which can describe mineral dissolution-precipitation reactions, aqueous complexation, and oxidation-reduction reactions, is shown to be a powerful tool for investigating these processes. The predictive capabilities of the model are, however, limited by the availability of key geochemical parameters such as the presence and quantities of primary and secondary mineral phases. Under these conditions, the model can provide valuable insight by means of sensitivity analyses.  相似文献   

16.
铅锌硫化矿浮选废水回用的应用研究   总被引:1,自引:0,他引:1  
通过对一矿山的铅锌硫化矿浮选废水回用工艺的分析,提出了对部分浮选废水直接回用,其余部分废水适度净化处理后再回用,使浮选废水100%回用于选矿生产的处理工艺,本工艺可达到使浮选废水的完全回用的目的,对国内众多的浮选企业提出了一种可行的废水处理方法。  相似文献   

17.
铅锌硫化矿浮选废水回用的应用研究   总被引:1,自引:0,他引:1  
通过对一矿山的铅锌硫化矿浮选废水回用工艺的分析,提出了对部分浮选废水直接回用,其余部分废水适度净化处理后再回用,使浮选废水100%回用于选矿生产的处理工艺,本工艺可达到使浮选废水的完全回用的目的,对国内众多的浮选企业提出了一种可行的废水处理方法。  相似文献   

18.
In an extensive environmental study, field samples, including soil, water, rice, vegetable, fish, human hair and urine, were collected at an abandoned tungsten mine in Shantou City, southern China. Results showed that arsenic (As) concentration in agricultural soils ranged from 3.5 to 935 mg kg−1 with the mean value of 129 mg kg−1. In addition, As concentration reached up to 325 μg L−1 in the groundwater, and the maximum As concentration in local food were 1.09, 2.38 and 0.60 mg kg−1 for brown rice, vegetable and fish samples, respectively, suggesting the local water resource and food have been severely contaminated with As. Health impact monitoring data revealed that As concentrations in hair and urine samples were up to 2.92 mg kg−1 and 164 μg L−1, respectively, indicating a potential health risk among the local residents. Effective measurements should be implemented to protect the local community from the As contamination in the environment.  相似文献   

19.
Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.  相似文献   

20.
重金属元素在冻土与融土中迁移的对比试验   总被引:1,自引:0,他引:1  
随着寒区经济的发展,冻土地区的矿山开采活动不断加剧,随之产生的重金属污染问题也越来越严重.冻土地区生态环境脆弱,一旦受到破坏就很难恢复.针对此问题,室内模拟了尾矿矿渣在冻土与融土中的填埋及其对填埋场周边土体的影响,通过检测填埋场各处土壤的温度、含水量以及重金属元素的含量,发现温度和水分对重金属元素的迁移影响很大.土壤温度越低,重金属元素的迁移越慢;在温度梯度的作用下,重金属元素均随着水分从土体的暖端向冷端迁徙并聚集于冻结锋面.重金属元素在冻土中的迁移比融土中慢,表明冻土环境不利于重金属元素的迁移.在土壤质地、温度和含水量等相同的情况下,Zn的迁移性较强,Pb和Cu的迁移性相对较弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号