首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Concentrations of metals were determined in four species of anchovy (Coilia sp.) from the Yangtze River, Taihu Lake, and Hongze Lake in Jiangsu Province, China. Concentrations of Cr in anchovy fish muscle ranged from 2.6 × 10−2 to 5.0 mg/kg ww, and Coilia nasus taihuensis in Jiaoshan, Taihu Lake contained the highest concentrations of Cr, which was almost 111-fold higher than the mean value at other locations. Concentrations of Pb ranged from 1.5 × 10−2 to 1.3 × 10−1 mg/kg ww. Comparisons of concentrations of lead (Pb) among the four species indicated that anadromous species contained higher concentrations of Pb than did freshwater species. However, concentrations of Pb in C. nasus from the Nanjing and Haimen locations in the Yangtze River were not significant higher than those of two freshwater species: C. nasus taihuensis from Taihu Lake and C. brachygnathus from Hongze Lake (Duncan’s test, α = 0.05). While concentrations of Cd and Zn ranged from 7.0 × 10−4 to 3.6 × 10−3 mg/kg ww and 3.4 to 4.8 mg/kg ww, respectively, there were no significant differences in concentrations among the eight locations. The only concentration of the metals studied that exceeded the Chinese National Standard was Cr in Coilia from Jiaoshan, Taihu Lake, which was 2.5-fold higher than the standard. These results indicate that people who consume the genus Coilia are not at risk due to concentrations of metals, except Cr in C. nasus taihuensis from Jiaoshan in Taihu Lake. Concentrations of all of the metals studied except for Cr were similar to or less than those of metals in most other areas in the world.  相似文献   

2.
Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg−1 near the mine in a regional background of 1–16 mg kg−1. Total Cr concentrations were between 18 and 740 mg kg−1 near the mine in a regional background of 26–143 mg kg−1. Total Pb concentrations were between 12 and 430 mg kg−1 near the mine in a regional background of 9–23 mg kg−1. Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.  相似文献   

3.
The concentrations of Cu, Zn, Pb and Cd in soils near a lead–zinc mine located in Shangyu, Zhejiang Province, China, were determined and their toxicity was assessed using the toxicity characteristic leaching procedure (TCLP) developed by the United States Environmental Protection Agency. The TCLP method is a currently recognized international method for evaluation of heavy metal pollution in soils. The available levels of Cu, Zn, Pb and Cd were 8.2–36, 23–143, 6.4–1367 and 0.41–2.2 mg kg−1, respectively, while the international standards were 15, 25, 5 and 0.5 mg kg−1, respectively. Soils around the mine were more polluted with Zn and Pb, followed by Cd and Cu. Moreover, the levels of heavy metals in the soils extracted by TCLP indicated that extraction fluid 2 was more effective than extraction fluid 1 in extracting the heavy metals from the polluted soils and there was a positive correlation between fluids 1 and 2. Available heavy metal contents determined by TCLP were correlated with soil total heavy metal contents.  相似文献   

4.
Soil ingestion is an important human exposure pathway of heavy metals in urban environments with heavy metal contaminated soils. This study aims to assess potential health risks of heavy metals in soils sampled from an urban environment where high frequency of human exposure may be present. A bioaccessibility test is used, which is an in vitro gastrointestinal (IVG) test of soluble metals under simulated physiological conditions of the human digestion system. Soil samples for assessing the oral bioaccessibility of arsenic (As) and lead (Pb) were collected from a diverse range of different land uses, including urban parks, roadsides, industrial sites and residential areas in Guangzhou City, China. The soil samples contained a wide range of total As (10.2 to 61.0 mg kg−1) and Pb (38.4 to 348 mg kg−1) concentrations. The bioaccessibility of As and Pb in the soil samples were 11.3 and 39.1% in the stomach phase, and 1.9 and 6.9% in the intestinal phase, respectively. The As and Pb bioaccessibility in the small intestinal phase was significantly lower than those in the gastric phase. Arsenic bioaccessibility was closely influenced by soil pH and organic matter content (r 2 = 0.451, p < 0.01) in the stomach phase, and by organic matter, silt and total As contents (r 2 = 0.604, p < 0.001) in the intestinal phase. The general risk of As and Pb intake for children from incidental ingestion of soils is low, compared to their maximum doses, without causing negative human health effects. The exposure risk of Pb in the soils ranked in the order of: industrial area/urban parks > residential area/road side. Although the risk of heavy metal exposure from direct ingestion of urban soils is relatively low, the risk of inhalation of fine soil particulates in the air remains to be evaluated.  相似文献   

5.
为了解我国华东地区鳜肌肉重金属含量现状,采集华东地区(江西南昌,安徽池州、滁州,江苏南京、扬州,浙江建德等)10个采样点野生鳜和池塘主养、池塘套养鳜样本共60份,采用原子荧光光谱分析法(AFS)、石墨炉原子吸收法(GFAAS)测定鳜背部肌肉中铬(Cr)、镉(Cd)、无机砷(As)、汞(Hg)和铅(Pb)等5种重金属的含量,评估其食用安全性与健康风险。结果表明,肌肉中Cd、Cr、Pb、As和Hg的总检出率为98.67%,总超标率为11.67%;其中,Pb、Cd和As超标样,分别占总样本量的28.33%、15%和15%,超标浓度为(0.612±0.111)、(0.181±0.031)和(0.474±0.035) mg·kg~(-1),71.43%的超标样分布于野生鳜群体;Cr、Hg的检出含量均低于我国鱼类水产品重金属的最高限量标准(GB 2762—2017)。3种养殖方式的鳜肌肉中重金属含量分布具有相似的规律(Pb>As>Cr=Cd>Hg),野生鳜肌肉中重金属含量高于人工养殖鳜,池塘主养鳜与池塘套养鳜之间无明显差异。食用安全性评价结果显示,目前,华东地区鳜达到国家标准的限量要求,仅Pb、As含量稍高,分别占周可耐受摄入量(PTWI)的14.42%和21.54%。健康风险评价结果显示,所有鳜样均未超过国际辐射防护委员会(ICRP)推荐的最大可接受水平(5×10~(-5)a~(-1))。野生鳜食用安全性低于人工养殖鳜,健康风险高于人工养殖鳜。上述研究结果为鳜水产品安全性评价与健康养殖提供了基础数据。  相似文献   

6.
The river Kali has been one of the major recipients of industrial effluents in the Muzaffarnagar district of western Uttar Pradesh. The present studies revealed the occurrence and bioaccumulation of heavy metals (Cd, Cr, Pb, Zn, Mn) in riverine water, sediment, and muscles of two fish species, Heteropneustis fossilis and Puntius ticto. Data showed that the order of occurrence of heavy metals was Pb > Zn > Mn > Cr > Cd in river water, Mn > Zn > Pb > Cr > Cd in sediment, Zn > Mn > Cr > Cd > Pb in Puntius ticto and Cr > Zn > Mn > Cd > Pb in Heteropneustis fossilis. Results indicate that the concentrations of Cd, Pb, and Zn in river water, Pb, Zn, and Mn in sediment, Cd, Cr, Pb, and Zn concentration in muscles of Puntius ticto and Cr, Pb, and Zn concentration in in muscles of Heteropneustis fossilis are higher than the permissible standard limits. The presence of heavy metals contributed to toxicity in different organs of fish in River Kali. The bioaccumulation of heavy metals in different biotic organisms in river ecosystem may have adverse consequences on humans and livestock.  相似文献   

7.
Heavy metal concentrations in muscle and their relation to thegrowth of two marine fish species,including tonguefish( Cynoglossus arel) and mullet( Mugil cephalus),were studied. The samples were collected in Bach Dang estuary andconcentrations of heavy metals( As,Cd,Co,Mn,Cu,Zn,Pb,and V) in muscle of the fisheswere determined. The result showed that the accumulated trend of heavy metal is different between fish species. The concentration of As,Zn,Mn,V,Cu,Pb,Co and Cd in tonguefish were 73. 7 ± 30. 6,22. 82 ± 4.87,3. 44 ± 2. 13,1. 61 ± 0. 15,0. 71 ± 0. 13,0. 45 ± 0. 24,0. 03 ± 0. 02 and 0. 02 ± 0. 02 mg·g-1,respectively. Meanwhile the concentration of Zn,As,V,Mn,Cu,Pb,Co and Cd in mullet were 83. 41 ±19. 68,9. 78 ± 1. 92,1. 36 ± 0. 54,1. 29 ± 0. 51,0. 65 ± 0. 12,0. 42 ± 0. 20,0. 06 ± 0. 03 and0. 03 ± 0. 01mg·g-1,respectively. Comparison of metal levels among thesespecies indicated that the concentrations of As and Mn in tonguefish were significantly higher than those in mullet,whereas Zn levels in mullet were found to be higher than that in tonguefish. There is no significant differences of Cd,Co,Cu,Pb and V levels in muscle between two species. Significant inversed relationshipsbetween concentration levels of metals and lengths of tonguefish were found for Mn,Cu and Zn,butnot for As,Cd,Pb,and V. There were no significant relationships between the heavy metal concentrations and the length of mullet. In general,decreasesof the heavy metal concentrations corresponded to the increases of fish body lengths,particularly for As,Co,Cu,Mn and V and the exception for Cd. Terefore reduced risks were associated with consuming biggermullet fish,and increased risks of As and Cd were associated with consuming bigger tonguefish in Bach Dang river mouth.  相似文献   

8.
The objective of this investigation was to examine the heavy metal status of the lower basin of Kainji dam (used for hydroelectricity generation), which includes Lakes Kainji/Jebba, Nigeria, and the potential for human exposure to heavy metals from eating fish caught in the lakes. Water, sediments and fish were sampled from the lakes and evaluated for As, Cu, Co, Cr, Fe, Hg, Mn, Ni, Pb, Sb, Ti, V and Zn using the EDXRF technique. Fe and Mn were found to be present at high mean concentrations in the water (13 and 9 μg L-1), sediment (7092 and 376 μg g-1) and fish (11.4 and 4.6 μg g-1) samples. Sb (3.2 μg L-1), Ti (4.1 μg L-1), Cr (2.2 μg L-1), Co (1.2 μg L-1), Cu (1.3 μg L-1) and Pb (1.2 μg L-1) in the water samples and Sb (29 μg g-1), Ti (27 μg g-1), V (27 μg g-1), Cr (27 μg g-1), Co (40 μg g-1), Ni (33 μg g-1), Cu (25 μg g-1), Zn (59 μg g-1) and Pb (19 μg g-1) in the sediment samples were found to be of medium mean concentrations. The other metals were present at trace levels (<1 μg), including As and Hg in the fish and sediment samples. There was an appreciable increase in␣metal concentrations in going from the water to the sediment samples. The probable source of the pollutants is anthropogenic, arising from agricultural activities, corrosion/abrasion of the ferrous steel material and additives in the lubricants and insulation used for auxiliary services on the turbine floor of the dam constructed on the lakes. However, natural geological sourcing from the underlying lake rock cannot be totally ignored, particularly the high levels of Fe and Mn in the sediment samples. The potential risk for human exposure to these metals emanates from the fish caught in the lakes and subsequently consumed, as there are already significant levels of these metals in the two fish species analysed, Tilapia (Oreochromis niloticus) and Chrysicthys (Chrysicthys auratus).  相似文献   

9.
We investigated the spatial distribution of Pb in soil and dust samples collected from 54 sites in Shenyang city, Liaoning province, Northeast China. Soil background Pb concentration was 22 mg kg−1 and control values from non-industrial areas were 33 mg kg−1 for soil and 38 mg kg−1 for dust. Soil Pb concentrations varied widely, ranging from 26 to 2911 mg kg−1, with a mean concentration of 200 mg kg−1, 9 times the background value and 6 times the control value. There was great variation in soil Pb, with a coefficient of variation (CV) of 1.06 and a standard deviation (SD) of 212 mg kg−1. Dust Pb concentrations fluctuated from 20 to 2810 mg kg−1, with a mean value of 220 mg kg−1, almost 6 times the control value. No significant differences in distribution were observed between soil Pb and dust Pb. The highest Pb concentration was observed in Tiexi district in an industrial area. Soil Pb concentration decreased with depth and with distance from the pollution source. Lead concentrations initially changed little but then decreased with distance from the roadside, and were generally higher on the east side of roads than on the west. Lead contents in different categories of urban area differed substantially with dust and soil Pb concentrations decreasing in the sequence: industrial >business >mixed (residential, culture and education)> reference areas.  相似文献   

10.
Lead (Pb) contents and partition in soils collected from eleven vegetable-growing lands in Fujian Province, China, were investigated using a modification of the BCR (Community Bureau of Reference) sequential extraction procedure coupled with the Pb isotope ratio technique. Pb contents in Chinese white cabbage (B. Chinensis L.) grown on the lands for this study were also measured. Results showed that Pb concentrations in fifty samples of topsoil ranged from 456 to 21.5 mg kg−1, with each mean concentration of six sampling lands exceeding the national standard (50 mg kg−1); while Pb concentrations in edible portions of thirty-two vegetable samples ranged from 0.009 to 2.20 mg kg−1, with four sampling sites exceeding the national sanitary standard (0.2 mg kg−1). A significant correlation (r = 0.971, P < 0.01) of Pb contents in the acid-extractable fractions by BCR approach and the vegetables was observed, which indicates that the acid-extractable Pb is useful for evaluating the metal bioavailability for plants and potential risk for human health in soils. The determination of lead isotope ratios in different chemical forms of soils by BCR sequential extraction procedures provides useful information on the Pb isotopic composition associated with different soil fractions (especially in the acid-extractable fractions), and the result is helpful for the further study on controlling and reducing Pb contamination in vegetable-growing soils.  相似文献   

11.
As urbanisation accelerates within less-economically developed countries, populations in cities such as Rio de Janeiro are subject to numerous health risks relating to “heavy metal”, sewage and vehicle pollution. These risks apply especially to children, through inhalation and dermal contact with pollutant-rich street sediments that reflect contamination from atmospheric deposition and act as effective sinks for heavy metals and oxalates. To assess the nature and extent of these risks street sediments were collected from industrial, commercial, residential and recreational areas with varying traffic densities within Rio de Janeiro. A modified selective extraction procedure was used to study the geochemical partitioning and bioavailability of Fe, Mn, Zn, Cu, Cr, Ni, Pb and C2O 4 . Oxalate partitioning has not been studied by traditional sequential methods and results from this procedure highlight the potential bioavailability of both oxalates and “heavy metals”, especially Pb and C2O 4 in industrial and recreational areas.  相似文献   

12.
Arsenic contamination in water,soil, sediment and rice of central India   总被引:1,自引:0,他引:1  
Arsenic contamination in the environment (i.e. surface, well and tube-well water, soil, sediment and rice samples) of central India (i.e. Ambagarh Chauki, Chhattisgarh) is reported. The concentration of the total arsenic in the samples i.e. water (n=64), soil (n=30), sediment (n=27) and rice grain (n=10) were ranged from 15 to 825 μg L−1, 9 to 390 mg kg−1, 19 to 489 mg kg−1 and 0.018 to 0.446 mg kg−1, respectively. In all type of waters, the arsenic levels exceeded the permissible limit, 10 μg L−1. The most toxic and mobile inorganic species i.e. As(III) and As(V) are predominantly present in water of this region. The soils have relatively higher contents of arsenic and other elements i.e. Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ga, Zr, Sn, Sb, Pb and U. The mean arsenic contents in soil of this region are much higher than in arsenic soil of West Bengal and Bangladesh. The lowest level of arsenic in the soil of this region is 3.7 mg kg−1 with median value of 9.5 mg kg−1. The arsenic contents in the sediments are at least 2-folds higher than in the soil. The sources of arsenic contamination in the soil of this region are expected from the rock weathering as well as the atmospheric deposition. The environmental samples i.e. water, soil dust, food, etc. are expected the major exposure for the arsenic contamination. The most of people living in this region are suffering with arsenic borne diseases (i.e. melanosis, keratosis, skin cancer, etc.).  相似文献   

13.
The mullet fish, Liza klunzingeri, commercially important and widely relished by Kuwaiti residents, and the stressed ecosystem in Kuwait Bay instigated us to conduct toxicity and bioaccumulation tests on heavy metals (Pb, Ni, V, Cu and Fe). Among five metals, Pb had the lowest observed effect concentration (LOEC) at 1 μg?l ?1. Using multi-factor Probit analysis, toxicity tests (72 h) on L. klunzingeri reared in filtered sea water in the laboratory showed Pb with maximum effect at median lethal concentration (LC50) followed by V, Ni, Cu and Fe. Their bioaccumulation factor (BAF) was in the sequence Pb>V>Fe>Cu and Ni. For fish exposed for 30 d, bioaccumulation exhibited increasing metal levels in liver followed by gills and muscles. These results suggest the potential use of L. klunzingeri as a bioindicator of metal pollution in the future.  相似文献   

14.
Building materials are potential sources of radiation, which represents a risk factor for human disease including cancer. In this work, the natural radioactivity due to the presence of 238U, 226Ra, 232Th and 40K in different painting oxides has been measured using gamma spectrometry with a Hyper Pure germanium detector. The concentrations of the heavy metals (Cd, Co, Mn, Pb, Ni, Sr, Rb, Cr, Cu and Zn) were determined by atomic absorption spectrometry in order to investigate their possible correlation with radioactive elements. The activity concentrations of 238U, 226Ra, 232Th and 40K ranged from 15 ± 0.75 to 126 ± 14, 2.35 ± 0.09 to 72.96 ± 1.96, 1.76 ± 0.31 to 12.88 ± 0.7 and 2.26 ± 0.09 to 200 ± 3.34 Bq kg−1, respectively. The calculated radium-equivalents were lower than values recommended for construction materials (370 Bq kg−1). The absorbed dose rates due to the natural radioactivity of the investigated samples ranged from 8.11 ± 0.24 to 68.46 ± 4.20 nGy/h. Also, the results revealed that some heavy metals (Cd, Co, Mn and Rb) were correlated with 238U, 226Ra, 232Th or 40K.  相似文献   

15.
Kidney stones (urinary calculi) have become a global scourge since it has been recognized as one of the most painful medical problems. Primary causative factors for the formation of these stones are not clearly understood, though they are suspected to have a direct relationship to the composition of urine, which is mainly governed by diet and drinking water. Sixty nine urinary calculi samples which were collected from stone removal surgeries were analyzed chemically for their Na, K, Ca, Mg, Cu, Zn, Pb, Fe and phosphate contents. Structural and mineralogical properties of stones were studied by XRD and FT-IR methods. The mean contents of trace elements were 1348 mg kg−1 (Na); 294 mg kg−1 (K); 32% (Ca); 1426 mg kg−1 (Mg); 8.39 mg kg−1 (Mn); 258 mg kg−1 (Fe); 67 mg kg−1 (Cu); 675 mg kg−1 (Zn); 69 mg kg−1 (Pb); and 1.93% (PO43−). The major crystalline constituent in the calculi of Sri Lanka is calcium oxalate monohydrate. Principal component analysis was used to identify the multi element relationships in kidney stones. Three components were extracted and the first component represents positively correlated Na-K-Mg-PO43− whereas the␣second components represent the larger positively weighted Fe–Cu–Pb. Ca–Zn correlated positively in the third component in which Mn–Cu correlated negatively. This study indicates that during the crystallization of human urinary stones, Ca shows more affinity towards oxalates whereas other alkali and alkaline earths precipitate with phosphates.Contribution from the Environmental Geology Research Group (EGRG), Department of Geology, University of Peradeniya, Sri Lanka.  相似文献   

16.
Environmental Geochemistry and Health - Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments...  相似文献   

17.
Kinetic measurements of metal accumulation in two marine macroalgae   总被引:5,自引:0,他引:5  
 We measured the uptake kinetics of four metals (Cd, Cr, Se and Zn) in two marine macroalgae (the green alga Ulva lactuca and the red alga Gracilaria blodgettii). Metal uptake generally displayed a linear pattern with increasing exposure time. With the exception of Cr, which exhibited comparable uptake rate constants at different concentrations, uptake rate constants of Cd, Se and Zn decreased with increasing metal concentration, indicating that the seaweeds had a higher relative uptake at lower metal concentration. Uptake of Cd and Zn was higher in U. lactuca than in G. blodgettii, whereas uptake of Cr and Se was comparable between the two species. Only Cd and Zn uptake in U. lactuca was significantly inhibited by dark exposure. A decrease in salinity from 28 to 10‰ enhanced the uptake of Cd, Cr, Se and Zn in U. lactuca 1.9-, 3.0-, 3.6-, and 1.9-fold, respectively. In G. blodgettii, Cd uptake increased twofold when salinity was decreased from 28 to 10‰, whereas uptake of Cr and Zn was not significantly affected by salinity change. The calculated depuration rate constants of metals in U. lactuca were 0.01 d−1 for Cd, 0.05 to 0.08 d−1 for Cr, 0.14 to 0.16 d−1 for Se, and 0.12 to 0.15 d−1 for Zn, and were relatively independent of the metal body burden in the algae. The predicted bioconcentration factor was 3 × 104 for Cd, 2 × 103 for Cr, 40 to 150 for Se, and 1 to 2 × 104 for Zn in U. lactuca. Our kinetic study suggested that U. lactuca would be a good biomonitor of Cr and Zn contamination in coastal waters. Received: 14 September 1998 / Accepted: 29 May 1999  相似文献   

18.
The heavy metal content in sewage sludges from a big Chinese city was investigated. Concentrations of zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni), cadmium (Cd) and mercury (Hg) in the sludges were 258–4050 mg kg‐1, bd: 994 mgkg‐1, 8.3–566 mg kg‐1, 26.3–370mgkg‐1 4.2–113 mg kg‐1 0.9–6.4 mg kg‐1 and 1.8–12.4 mg kg‐1 respectively. The concentrations of Zn and Pb in the sewage sludges from the residential areas were higher than those in the mixed ones (from both residential and industrial areas). The concentrations of heavy metals in the flocculently dewatered sewage sludges were higher than those in the sediment of the centrifuged undewatered sewage sludges. After centrifuging, more than 60% of heavy metals remained in the sludge sediment with an exception of Cd. The content of organic matter, total phosphorus (T‐P) and total potassium (T‐K) in these sewage sludges was also measured.  相似文献   

19.
A survey of lead pollution in Chhattisgarh State, central India   总被引:2,自引:0,他引:2  
Lead (Pb) is of major environmental concern due to its toxicological importance. The anthropogenic emission of Pb is at least 100 times higher than natural emissions. Soil and dust are significant sources of Pb exposure. Lead is generally immobile in soil and accumulates in the upper layers. Lead particles may enter homes via shoes, clothes, pets, and windows. Central India is rich in deposits of natural resource materials such as coal, pyrite, dolomite, and alumina that contain Pb and other heavy metals at the trace levels, and the substantial exploitation of these materials has tended to increased contamination of water and geological formations. Here we present data on Pb concentrations in the water, soil and sediment samples (n=158) collected from 70 locations in Chhattisgarh state, Raipur region. Lead concentrations in the surface water (n=44), groundwater (n=44), soils (n=60) and sediments (n=10) ranged from 6 to 1410, 3 to 52, 12.8 to 545, and 31 to 423 μg g−1, with mean values of 305, 16, 102 and 190 μg g−1, respectively. Most of the Pb fractions of >80% can be leached out with the chemical extractants EDTA, acetic acid, and hydroxylamine hydrochloride. Lead has accumulated in the soil clay fraction due to its relatively large surface area and decreases with increasing depth in the soil profile.  相似文献   

20.
The level of accumulation of selected essential and non-essential metals, namely; Ca, Cu, Fe, Zn, Mn, Cd, Pb, and Cr have been investigated in the seeds, fruits, and flowers of some medicinal plants utilized for tapeworm treatment in Ethiopia and their respective soil samples. These include seed of Cucurbita maxima (Duba), fruit of Embelia abyssinica (Ankoko), flowers of Hagenia abyssinica (Kosso), and fruits of Rosa abyssinica (Kega) and their respective soil samples. A wet digestion procedure with a mixture of conc. HNO3 and HClO4 for the plant samples and a mixture of conc. HNO3, HCl, and H2O2 for soil samples were used to solubilize the metals. Ca (1280–12,670?mg?kg?1) was the predominant metal followed by Fe (104–420?mg?kg?1), and Zn (18–185?mg?kg?1) in all the plant materials except for Hagenia abyssinica flower from Hirna in which Mn (16–42?mg?kg?1) followed by Fe. Among the non-essential toxic metals, Pb was not detected in Cucurbita maxima of Boji, Gedo and Hirna origins and in Rosa abyssinica of Hirna site. Similarly, Cr was not detected in Rosa abyssinica fruits of Boji and Gedo sites. The sampled soils were found to be between strongly acidic to weakly basic (pH: 4.7–7.1). In the soil samples, Ca (8528–18,900?mg?kg?1) was the most abundant metal followed by Fe (417–912?mg?kg?1), Zn (155–588?mg?kg?1), Mn (54–220?mg?kg?1), Cr (21–105. mg?kg?1), Cu (11–58?mg?kg?1), Pb (13–32?mg?kg?1) and Cd (2.8–4.8?mg?kg?1). The levels of most of the metals determined in the medicinal plants and the respective soil samples are in good agreement with those reported in the literature and the standards set for the soil by various legislative authorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号