首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effects of ocean warming and acidification were compared in larvae from two populations of the cold-eurythermal spider crab Hyas araneus, from one of its southernmost populations (around Helgoland, southern North Sea, 54°N, habitat temperature 3–18°C; collection: January 2008, hatch: January–February 2008) and from one of its northernmost populations (Svalbard, North Atlantic, 79°N, habitat temperature 0–6°C; collection: July 2008, hatch: February–April 2009). Larvae were exposed to temperatures of 3, 9 and 15°C combined with present-day normocapnic (380 ppm CO2) and projected future CO2 concentrations (710 and 3,000 ppm CO2). Calcium content of whole larvae was measured in freshly hatched Zoea I and after 3, 7 and 14 days during the Megalopa stage. Significant differences between Helgoland and Svalbard Megalopae were observed at all investigated temperatures and CO2 conditions. Under 380 ppm CO2, the calcium content increased with rising temperature and age of the larvae. At 3 and 9°C, Helgoland Megalopae accumulated more calcium than Svalbard Megalopae. Elevated CO2 levels, especially 3,000 ppm, caused a reduction in larval calcium contents at 3 and 9°C in both populations. This effect set in early, at 710 ppm CO2 only in Svalbard Megalopae at 9°C. Furthermore, at 3 and 9°C Megalopae from Helgoland replenished their calcium content to normocapnic levels and more rapidly than Svalbard Megalopae. However, Svalbard Megalopae displayed higher calcium contents under 3,000 ppm CO2 at 15°C. The findings of a lower capacity for calcium incorporation in crab larvae living at the cold end of their distribution range suggests that they might be more sensitive to ocean acidification than those in temperate regions.  相似文献   

2.
Various iron oxides are used for Fenton reactions to degrade organic pollutants. The degradation efficiency may be improved by transforming an iron oxide phase to another. Here, we report on the transformation of goethite into hematite by thermal treatment at 400 °C. The products were analyzed by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and N2-physisorption. The catalytic activities were measured for orange II bleaching at initial concentration of 25 mg L?1, pH 3, catalyst concentration of 0.2 g L?1; 5 mM H2O2, 30 °C. Results show that the synthesized goethite was successfully transformed into hematite, and the specific surface area of the material increased from 134 to 163 m2 g?1. The bleaching efficiency of the orange II dye reached 100 % for the hematite product, versus 78 % for goethite. Therefore, a moderate thermal treatment of a plasma-synthesized goethite improves the catalytic oxidation of organic pollutants.  相似文献   

3.
The underlying physiological mechanisms explaining why the adult penaeid prawn Litopenaeus stylirostris cannot successfully face heavy stressful events on the low edge of its thermopreferendum (20–22°C) were studied during the austral winter. Prawns were studied during recovery from net fishing and rapid transfer from outdoor earthen ponds into indoor facilities. This was assimilated to a predator–prey interaction. O2-consumption, hemolymph osmotic pressure (OPh), arterial O2 partial pressure (PO2), a–v O2-capacitance and mortality rates were analysed. Data were compared to similar challenges performed at 28°C during the austral summer. At 20–22°C, mortality of up to 70% was observed after 2 days whereas at 28°C, maximum mortality was 3–5%. Mortality occurred when OPh shifted towards equilibrium with seawater, the resting O2-consumption, the a–v O2-capacitance and the arterial PO2 went down to minimal values. These events can be counterbalanced by transiently hyper-oxygenating the hemolymph or by blocking the OPh shift in isosmotic water (Wabete et al. in Aquaculture 260:181–193, 2006): both led to a dramatic decrease in mortality. It is concluded that in penaeid prawns L. stylirostris, a mismatch between O2-demand and O2-supply contributes to setting the geographical limits for this animal species through an impairment of their hemolymph O2-carrying capacity during heavy stressful events like chasing by predators.  相似文献   

4.
Respiration rates and elemental composition (carbon and nitrogen) were determined for four dominant oncaeid copepods (Triconia borealis, Triconia canadensis, Oncaea grossa and Oncaea parila) from 0–1,000 m depth in the western subarctic Pacific. Across the four species of which dry weight (DW) varied from 2.0 to 32 μg, respiration rates measured at in situ temperature (3°C) increased with DW, ranging from 0.84 to 7.4 nl O2 individual−1 h−1. Carbon (C) and nitrogen (N) composition of the four oncaeid species ranged from 49–57% of DW and 7.0–10.3% of DW, respectively, and the resultant C:N ratios were 4.8–8.3. The high C contents and C:N ratios were reflected by large accumulation of lipids in their body. Specific respiration rates (SR, a fraction of body C respired per day) ranged between 0.5 and 1.3% day−1. Respiration rates adjusted to a body size of 1 mg body N (i.e. adjusted metabolic rates, AMR) of the four oncaeid species [0.6–1.1 μl O2 (mg body N)−0.8 h−1 at 3°C] were significantly lower than those (1.7–5.1) reported in the literature for oithonid and calanoid copepods at the same temperature. The present results indicate that lower metabolic expenditure due to less active swimming (pseudopelagic life mode) together with rich energy reserve in the body (as lipids) are the characters of oncaeid copepods inhabiting in the epi- and mesopelagic zones of this region.  相似文献   

5.
The impact of elevated CO2 and temperature on photosynthesis and calcification in the symbiont-bearing benthic foraminifer Marginopora vertebralis was studied. Individual specimens of M. vertebralis were collected from Heron Island on the southern Great Barrier Reef (Australia). They were maintained for 5 weeks at different temperatures (28, 32 °C) and pCO2 (400, 1,000 µatm) levels spanning a range of current and future climate-change scenarios. The photosynthetic capacity of M. vertebralis was measured with O2 microsensors and a pulse-amplitude-modulated chlorophyll (Chl) fluorometer, in combination with estimates of Chl a and Chl c 2 concentrations and calcification rates. After 5 weeks, control specimens remained unaltered for all parameters. Chlorophyll a concentrations significantly decreased in the specimens at 1,000 µatm CO2 for both temperatures, while no change in Chl c 2 concentration was observed. Photoinhibition was observed under elevated CO2 and temperature, with a 70–80 % decrease in the maximum quantum yield of PSII. There was no net O2 production at elevated temperatures in both CO2 treatments as compared to the control temperature, supporting that temperature has more impact on photosynthesis and O2 flux than changes in ambient CO2. Photosynthetic pigment loss and a decrease in photochemical efficiency are thus likely to occur with increased temperature. The elevated CO2 and high temperature treatment also lead to a reduction in calcification rate (from +0.1 to >?0.1 % day?1). Thus, both calcification and photosynthesis of the major sediment-producing foraminifer M. vertebralis appears highly vulnerable to elevated temperature and ocean acidification scenarios predicted in climate-change models.  相似文献   

6.
Bioerosion is one of the most important structuring forces in coral reef communities. The bioerosion impact of several species of fish, sponges and sea urchins have been estimated in the Caribbean; however, there is no information for one important species, the red sea urchin Echinometra viridis. This species can be found in high densities in many localities. In this study, bioerosion rates for E. viridis were estimated in two patch reefs off La Parguera, southwest Puerto Rico, using the population size-class distribution, average densities, and the CaCO 3 content in fecal pellets produced over 24 h. Average densities of urchins along four depth intervals were estimated using 40-m transect lines and 1-m 2 quadrats. Average size and size-structure distribution were estimated by measuring the diameter of 180–220 urchins haphazardly collected at each of the four depth intervals. The ignition–loss method was used to estimate the daily rate of bioerosion. Fecal pellets produced by the urchins over a 24 h period were collected in buckets, rinsed in fresh water, dried for 24 h at 70°C, and then burned in a furnace at 550°C, first to eliminate organics, and then at 1000°C until constant weight to determine the amount of calcium carbonate (CaCO 3) in the fecal pellets. HCl (10%) was then added to the remainder of the sample to test for presence of CaCO 3. Average individual CaCO 3 bioerosion rates were estimated at 0.181±0.104 g day -1. Average densities (0.77–62.0 ind. m -2), size (2.01–2.44 cm) and average bioerosion rates (0.114–4.14 kg m -2 year -1) were significantly higher in shallow areas (1–3 m) in both reefs. Bioerosion rates were low compared to those reported for parrotfish, endolithic sponges and the black sea urchin D. antillarum, but they were higher than those reported for other small-sized sea urchins in the Caribbean and the Indo-Pacific.  相似文献   

7.
《毒物与环境化学》2012,94(3-6):228-243
Abstract

Oxidative removal of toluene using copper and cobalt bimetallic catalysts with varying molar ratios supported on sepiolite was investigated. The catalysts prepared by a deposition precipitation method and were characterized using X-ray diffraction, nitrogen adsorption-desorption, field emission scanning electron microscopy, H2-temperature-programmed reduction, transmission electron microscope, and inductive coupled plasma atomic emission spectroscopy. The species supported on sepiolite are Co3O4, CuO, and CuCo2O4. The activities of the tested catalysts increased in the order 0Co-4Cu/Sep <1Co-3Cu/Sep <4Co-0Cu/Sep <1Co-1Cu/Sep <3Co-1Cu/Sep. The latter exhibiting 90% toluene oxidative degradation at 288?°C within 15?h, having high selectivity towards CO2, and being stable at 300?°C up to 15?h. In conclusion, this study showed that sepiolite has excellent properties as a support.  相似文献   

8.
Ocean acidification and global warming are occurring concomitantly, yet few studies have investigated how organisms will respond to increases in both temperature and CO2. Intertidal microcosms were used to examine growth, shell mineralogy and survival of two intertidal barnacle post-larvae, Semibalanus balanoides and Elminius modestus, at two temperatures (14 and 19°C) and two CO2 concentrations (380 and 1,000 ppm), fed with a mixed diatom-flagellate diet at 15,000 cells ml−1 with flow rate of 10 ml−1 min−1. Control growth rates, using operculum diameter, were 14 ± 8 μm day−1 and 6 ± 2 μm day−1 for S. balanoides and E. modestus, respectively. Subtle, but significant decreases in E. modestus growth rate were observed in high CO2 but there were no impacts on shell calcium content and survival by either elevated temperature or CO2. S. balanoides exhibited no clear alterations in growth rate but did show a large reduction in shell calcium content and survival under elevated temperature and CO2. These results suggest that a decrease by 0.4 pH(NBS) units alone would not be sufficient to directly impact the survival of barnacles during the first month post-settlement. However, in conjunction with a 4–5°C increase in temperature, it appears that significant changes to the biology of these organisms will ensue.  相似文献   

9.

The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70–75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO3, SrTiO3, BaTiO3, Al2O3, TiO3, MgO, ZrO2. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.

  相似文献   

10.
Future ocean acidification will be amplified by hypoxia in coastal habitats   总被引:1,自引:0,他引:1  
Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.  相似文献   

11.
The Au/Al2O3 and Au–Rh/Al2O3 catalysts were prepared by deposition–precipitation. The promotional effect of Rh on the performance of the Au/Al2O3 catalyst for CO oxidation was studied. The results indicate that using Au/Al2O3 catalyst, CO can be completely oxidized at 0°C or much lower temperature but the catalyst deactivated very fast. Rh can improve the stability of Au/Al2O3 catalyst more than 10 times, which gives an important hint to develop high stable catalyst for CO oxidation at low temperature.  相似文献   

12.
With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid–base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 μatm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid–base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid–base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.  相似文献   

13.
We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24 °C, 700–2,140 μatm) for 8 weeks in a batch culture and at four pCO2 levels (20 °C, 620–2,870 μatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 μatm pCO2 as is already naturally experienced by the investigated barnacle population.  相似文献   

14.
A new composite for water treatment was prepared by melt blend for oil and hexavalent chromium absorption. Ethylene Propylene Diene Monomer (EPDM) was the matrix, calcinatory Fe2O3 and anion-exchange resin 201×7 were the fillers. This composite can suspend in water–oil contact (WOC) and absorb oils and hexavalent chromium in wastewater simultaneously. The absorbencies of composites changed greatly with various ratios of calcinatory Fe2O3 and anion-exchange resin 201×7. The results showed that the oil absorbencies increased continuously and hexavalent chromium absorbencies were step-down as calcinatory Fe2O3 loadings from 13 to 19%. The composite can adsorb oils and hexavalent chromium simultaneously. The optimized proportion of calcinatory Fe2O3 and anion-exchange resin 201×7 in composite was found when the absorbencies of oils and hexavalent chromium reaching the maximum simultaneously. This composite is an inexpensive, convenient and high efficiency material for removing oils and hexavalent chromium from wastewater.  相似文献   

15.
The purpose of the research was to study the behavior of lignin degradation under different conditions (T 110–190°C, pO2 0.5–1.5 MPa, pH 5, 9 and 12) and to develop a predictive model. Temperature increase improved lignin removal from 75% at 110°C to 100% at 190°C (experimental). Increasing the pH enhanced the lignin removal efficiency from 30 to 97% (experimental). The developed model predicted the lignin degradation and changes in COD, BOD and TOC. The model agreed well with the experimental data (R 2 = 0.93 at pH 5 and 12).  相似文献   

16.
Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7′N, 12°1.1′W) and spawned in July 2011. Larvae were exposed to Ambient (400 μatm CO2), MidCO2 (700 μatm), or HighCO2 (1,000 μatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.  相似文献   

17.
Mechanisms that can influence the tolerance of hypoxia in brackish waters were studied in resting and fed crabs, Carcinus maenas, at 15?°C. Mortality, blood oxygenation, acid-base status and lactate concentration were analysed in fed crabs held in full-strength normoxic seawater (32.5‰?S) and then transferred for 24?h to a partial pressure of oxygen (Po2) of 3?kPa (1.4?mg?l?1) and various salinities (17, 12.5, 10, 8‰?S). At salinity levels >10‰, fed crabs tolerated Po2 values as low as 3?kPa in the ambient water and 0.5?kPa in their arterial blood for 24?h without switching to anaerobic metabolism. Only below 10‰?S did their blood-lactate content rise, leading to their death despite the fact that their blood O2-content was twice the control value measured in full-strength normoxic seawater and their blood Po2 did not decrease below values recorded at higher salinity levels. Addition of CO2 to 8‰?S water (CO2 partial pressure increasing from 0.1 to 0.3?kPa) decreased blood-lactate production and mortality, suggesting that at 10‰?S impairment of the O2 supply is limited by an excessive blood O2-affinity. The results are discussed in terms of the distribution (?10‰?S) of C. maenas along salinity gradients in estuaries and bays.  相似文献   

18.
The kinetics of famotidine (FAM) transformation under the influence of various factors, important from the environmental point of view, was investigated in aqueous solutions. The degradation processes using UV, H2O2, UV/H2O2, H2O2/Fe2+, and UV/H2O2/Fe2+ were studied. Direct photolysis and H2O2-assisted photolysis showed a pseudo-first-order kinetics, while the Fenton and the photo-Fenton processes fit second-order kinetics. The provided experiments proved a high resistance of FAM to direct photolysis. Its stability depends highly on the pH of the reaction solutions. The rate of FAM direct photolysis in acidic solutions was almost negligible. The reaction rate of FAM photolysis at pH 8–9 was 3.7 × 10?3 min?1 with DT50 about 3 h 7 min. It was found that the presence of H2O2 in the reaction environment enhances the rate of photolysis of FAM. The observed rates of reaction were 5.1 × 10?3 min?1 and 3.7 × 10?3 min?1 in acidic and basic solutions, respectively. The used Fenton systems appeared to be the most efficient in FAM removal. The rate of reaction depends on concentration of Fe2+ and H2O2. It was observed that the presence of UV-light enhances the reaction rate by two to six times in comparison to the classical Fenton system. Additionally, FAM behavior in natural water under solar irradiation was examined. The irradiation experiments were carried out in batch experiments with simulated sunlight.  相似文献   

19.
Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2-exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 μm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 μm. Interestingly, the incorporation of non-acid-soluble organic matrix (chitin) in the cuttlebones of CO2-exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 ] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.  相似文献   

20.
The shortfin mako shark, Isurus oxyrinchus, is a highly streamlined epipelagic predator that has several anatomical and physiological specializations hypothesized to increase aerobic swimming performance. A large swim-tunnel respirometer was used to measure oxygen consumption (MO2) in juvenile mako sharks (swimming under controlled temperature and flow conditions) to test the hypothesis that the mako shark has an elevated maintenance metabolism when compared to other sharks of similar size swimming at the same water temperature. Specimen collections were conducted off the coast of southern California, USA (32.94°N and 117.37°W) in 2001-2002 at sea-surface temperatures of 16.0–21.0°C. Swimming MO2 and tail beat frequency (TBF) were measured for nine mako sharks [77–107 cm in total length (TL) and 4.4 to 9.5 kg body mass] at speeds from 28 to 54 cm s−1 (0.27–0.65 TL s−1) and water temperatures of 16.5–19.5°C. Standard metabolic rate (SMR) was estimated from the extrapolation to 0-velocity of the linear regression through the LogMO2 and swimming speed data. The estimated LogSMR (±SE) for the pooled data was 2.0937 ± 0.058 or 124 mg O2 kg−1 h−1. The routine metabolic rate (RMR) calculated from seventeen MO2 measurements from all specimens, at all test speeds was (mean ± SE) 344 ± 22 mg O2 kg−1h−1 at 0.44 ± 0.03 TL s−1. The maximum metabolic rate (MMR) measured for any one shark in this study was 541 mg O2 kg−1h−1 at 54 cm s−1 (0.65 TL s−1). The mean (±SE) TBF for 39 observations of steady swimming at all test speeds was 1.00 ± 0.01 Hz, which agrees with field observations of 1.03 ± 0.03 Hz in four undisturbed free-swimming mako sharks observed during the same time period. These findings suggest that the estimate of SMR for juvenile makos is comparable to that recorded for other similar-sized, ram-ventilating shark species (when corrected for differences in experimental temperature). However, the mako RMR and MMR are apparently among the highest measured for any shark species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号