首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work was to investigate the effects of spreading olive oil mill wastewater (OMWW) on soil biochemical parameters and olive production in an organically managed olive orchard. The experiment was carried out with three different doses of OMWW (80, 160 and 500 m3 ha?1) and a control (untreated soil). Three samplings were done at 10, 30 and 90 days after the administration of the byproduct. OMWW application differentially modified the biochemical properties of the soil analyzed. Organic matter, organic carbon, total nitrogen and extractable phosphorus soil contents increased proportionally with each increasing dose. The values of these parameters decreased gradually with time. Total microbial activity was altered and the OMWW 500 m3 ha?1 treatment proved to be the most active when compared with the other applied doses. OMWW agricultural application also modified the structure of soil microbial communities, particularly affecting Gram positive and negative bacteria, while fungal biomass did not show consistent changes. Although there was a salinity increase in the treated soil, especially at the highest dose, the productive parameters analyzed (fruit and oil tree?1) were not affected. In light of the obtained results, we consider that low dose of OMWW could be considered an alternative farming practice for semiarid regions.  相似文献   

2.

Background, aim, and scope  

Olive oil mill wastewater (OOMW) environmental impacts minimization have been attempted by developing more effective processes, but no chemical or biological treatments were found to be totally effective to mitigate their impact on receiving systems. This work is the first that reports simultaneously the efficiency of three different approaches: biological treatment by two fungal species (Trametes versicolor or Pleurotus sajor caju), enzymatic treatment by laccase, and chemical treatment by photo-Fenton oxidation on phenols removal.  相似文献   

3.

The treatment of an effluent from the production of trifluraline was studied using a 1-L, semi-batch, tank-stirred glass reactor for performing three different advanced oxidation processes (photoperoxidation, Fenton, photo-Fenton). A commercial, medium-pressure mercury lamp was used for sample irradiation. The degradation was monitored by measurements of absorptiometric color reduction, UV-visible absorption spectra, and chemical oxygen demand (COD). The obtained results showed that the photo-Fenton process was the most effective treatment for the trifluraline effluent.  相似文献   

4.
The treatment of an effluent from the production of trifluraline was studied using a 1-L, semi-batch, tank-stirred glass reactor for performing three different advanced oxidation processes (photoperoxidation, Fenton, photo-Fenton). A commercial, medium-pressure mercury lamp was used for sample irradiation. The degradation was monitored by measurements of absorptiometric color reduction, UV-visible absorption spectra, and chemical oxygen demand (COD). The obtained results showed that the photo-Fenton process was the most effective treatment for the trifluraline effluent.  相似文献   

5.
Intensive use of chlorinated pesticides from the 1960s to the 1990s has resulted in a diffuse contamination of soils and surface waters in the banana-producing areas of the French West Indies. The purpose of this research was, for the first time, to examine the degradation of two of these persistent pollutants – chlordecone (CLD) and beta-hexachlorocyclohexane (β-HCH) in 1 mg L?1 synthetic aqueous solutions by means of photolysis, (photo-) Fenton oxidation and ozonation processes. Fenton oxidation is not efficient for CLD and yields less than 15% reduction of β-HCH concentration in 5 h. Conversely, both molecules can be quantitatively converted under UV-Vis irradiation reaching 100% of degradation in 5 h, while combination with hydrogen peroxide and ferrous iron does not show any significant improvement except in high wavelength range (>280 nm). Ozonation exhibits comparable but lower degradation rates than UV processes. Preliminary identification of degradation products indicated that hydrochlordecone was formed during photo-Fenton oxidation of CLD, while for β-HCH the major product peak exhibited C3H3Cl2 as most abundant fragment.  相似文献   

6.
Solar photo-Fenton process has been extensively reported to be highly efficient in the remediation of complex industrial wastewater containing several families of pollutants such as pharmaceuticals, dyes, pesticides, derivatives of wine, etc. Moreover, solar photo-Fenton mathematical modelling regarded as a powerful tool for scaling-up and process control purposes is hindered by the complexity and variability of its reaction mechanism which depends on the particular wastewater under study. In this work, non-biodegradable cork boiling wastewater has been selected as a case study for solar photo-Fenton dynamic modelling by using MATLAB® software. First of all physic-chemical pretreatment was applied attaining chemical oxygen demand (COD) reductions between 43 and 70 % and total suspended solid (TSS) reductions between 23 % and 59 %. After solar photo-Fenton treatment, COD decreased between 45 and 90 % after consumptions of H2O2 varying around 1.9 and 2.4 g/L. Individual calibration of the semi-empirical model by using experimental results made it possible to perfectly predict hydrogen peroxide variations throughout the treatment. It must be highlighted that slight deviations between predictions and experimental data must be attributed to important changes in wastewater characteristics.  相似文献   

7.
The present research deals with the development of a new heterogeneous photocatalysis and Fenton hybrid system for the removal of color from textile dyeing wastewater as Rhodamine B (RhB) solutions by using Fe2+/H2O2/Nb2O5 as a photocatalytic system. The application of this photocatalytic system for the decolorization of dye contaminants is not reported in the literature yet. Different parameters like dye concentration, Nb2O5/Fe2+ catalyst amount, pH, and H2O2 concentration have been studied. The optimum conditions for the decolorization of the dye were initial concentration of 10 mg L?1 of dye, pH 4, and Nb2O5/Fe2+ catalyst concentration of 0.5 g L?1/50 mg L?1. The optimum value of H2O2 concentration for the conditions used in this study was 700 mg L?1. Moreover, the efficiency of the Nb2O5/photo-Fenton hybrid process in comparison to photo-Fenton alone and a dark Fenton process as a control experiment to decolorize the RhB solution has been investigated. The combination of photo-Fenton and Nb2O5 catalysts has been proved to be the most effective for the treatment of such type of wastewaters. The results revealed that the RhB dye was decolorized in a higher percent (78 %) by the Nb2O5/photo-Fenton hybrid process (Fe2+/H2O2/Nb2O5/UV) than by the photo-Fenton process alone (37 %) and dark Fenton process (14 %) after 120 min of treatment. Moreover, the Nb2O5 catalyst as a heterogeneous part of the photocatalytic system was demonstrated to have good stability and reusability.  相似文献   

8.
Sanitary landfill leachates are a complex mixture of high-strength organic and inorganic persistent contaminants, which constitute a serious environmental problem. In this study, trace contaminants present in leachates were investigated by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector before and after a pre-oxidation step using a solar photo-Fenton process. More than 40 organic compounds were detected and identified as benzene (0.09?±?0.07 mg?L-1), trichlorophenol (TCP) (0.18?±?0.12 mg?L-1), phthalate esters (Di-n-butyl phthalate (DBP), Butyl benzyl phthalate (BBP), Di(2-ethylhexyl) phthalate (DEHP)) (DBP: 0.47?±?0.01 mg?L-1; BBP: 0.36?±?0.02 mg?L-1; DEHP: 0.18?±?0.01 mg?L-1), among others. Toluene, pentachlorophenol, dimethyl phthalate, diethyl phthalate, and Di-n-octyl phthalate were never detected in any of the samples. After the photo-Fenton treatment process, TCP decreased to levels below its detection limit, benzene concentration increased approximately three times, and DBP concentration decreased about 77 % comparatively to the raw leachate sample. The solar photo-Fenton process was considered to be very efficient for the treatment of sanitary landfill leachates, leading to the complete elimination of 24 of the detected micropollutants to levels below their respective detection limits and low to significant abatement of seven other organic compounds, thus resulting in an increase of the leachate biodegradability.  相似文献   

9.
Photo-Fenton treatment of water containing natural phenolic pollutants   总被引:10,自引:0,他引:10  
Phenolic compounds are known to be present in high concentrations in various types of agro-industrial wastes. As they are highly biorecalcitrant, the possibility of treatment by advanced oxidation processes should be investigated. In this work, six model phenolic compounds (vanillin, protocatechuic acid, syringic acid, p-coumaric acid, gallic acid and L-tyrosine) were chosen for a demonstration of degradation by photo-Fenton reaction, under artificial light in laboratory experiments in Vienna and under sunlight in pilot-plant experiments at the Plataforma Solar de Almería in Spain. All compounds were completely mineralised. No non-degradable intermediates were produced, either in experiments with single substances or in a more complex matrix of a mixture of phenolic compounds. The expected selectivity of the photo-Fenton reaction for aromatic compounds was proven by comparison of the decrease in total organic carbon with the removal of total phenolic content.  相似文献   

10.
In this paper, for the first time, faujasite Y zeolite impregnated with iron (III) was employed as a catalyst to remove a real cocktail of micropollutants inside real water samples from the Meurthe river by the means of the heterogeneous photo-Fenton process. The catalyst was prepared by the wet impregnation method using iron (III) nitrate nonahydrate as iron precursor. First, an optimization of the process parameters was conducted using phenol as model macro-pollutant. The hydrogen peroxide concentration, the light wavelength (UV and visible) and intensity, the iron loading immobilized, as well as the pH of the solution were investigated. Complete photo-Fenton degradation of the contaminant was achieved using faujasite containing 20 wt.% of iron, under UV light, and in the presence of 0.007 mol/L of H2O2 at pH 5.5. In a second step, the optimized process was used with real water samples from the Meurthe river. Twenty-one micropollutants (endocrine disruptors, pharmaceuticals, personal care products, and perfluorinated compounds) including 17 pharmaceutical compounds were specifically targeted, detected, and quantified. All the initial concentrations remained in the range of nanogram per liter (0.8–88 ng/L). The majority of the micropollutants had a large affinity for the surface of the iron-impregnated faujasite. Our results emphasized the very good efficiency of the photo-Fenton process with a cocktail of a minimum of 21 micropollutants. Except for sulfamethoxazole and PFOA, the concentrations of all the other microcontaminants (bisphenol A, carbamazepine, carbamazepine-10,11-epoxide, clarithromycin, diclofenac, estrone, ibuprofen, ketoprofen, lidocaine, naproxen, PFOS, triclosan, etc.) became lower than the limit of quantification of the LC-MS/MS after 30 min or 6 h of photo-Fenton treatment depending on their initial concentrations. The photo-Fenton degradation of PFOA can be neglected. The photo-Fenton degradation of sulfamethoxazole obeys first-order kinetics in the presence of the cocktail of the other micropollutants.  相似文献   

11.
The degradation of phenol in acidic solution at pH 3 has been investigated under various photo- and electrochemical conditions. A laboratory-scale reactor on which were mounted net electrodes (RuO2/IrO2-coated Ti anodes (DSA) and stainless steel cathodes) and 254 nm UV lamps was established to effectively reduce ferric reagents. The experimental results of the photoelectron-chemical reaction suggested that the current efficiency of reducing ferric ion was improved by increasing the number of electrodes used, and the UV lamps were important to inducing the reduction of ferric carboxylates, which were the major intermediates that were formed upon a particular degree of phenol oxidation. Accordingly, the addition of an initial concentration of 400 ppm ferrous salt and 10,200 ppm hydrogen peroxide (in a continuous mode) resulted in the removal of over 92 % of TOC (initial phenol?=?2,000 ppm, TOC?=?1,532 ppm) by 4 h of the photoelectro-Fenton and the sequential 2 h of the photo-Fenton processes. HPLC was utilized to monitor the formation of aromatic and carboxylate byproducts, and revealed that the aid of photo irradiation eliminated most of the oxalate residue from the final solution, which would have contributed to the 25 % of the TOC that was inactive in the electrolytic system.  相似文献   

12.
The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8 %, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9 %, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9?±?2 and 85.5?±?2 %, whereas 70 % of total organic carbon removal was achieved.  相似文献   

13.
Abstract

The objective of this study was to evaluate the efficacy of oral sodium chlorate administration on reducing total coliform populations in ewes. A 30% sodium chlorate product or a sodium chloride placebo was administered to twelve lactating Dorper X Blackbelly or Pelibuey crossbred ewes averaging 65 kg body weight. The ewes were adapted to diet and management. Ewes were randomly assigned (4/treatment) to one of three treatments which were administered twice daily by oral gavage for five consecutive days: a control (TC) consisting of 3 g sodium chloride/animal/d, a T3 treatment consisting of 1.8 g of sodium chlorate/animal/d, and a T9 treatment consisting of 5.4 g sodium chlorate/animal/d; the latter was intended to approximate a lowest known effective dose. Ruminal samples collected by stomach tube and freshly voided fecal samples were collected daily beginning 3 days before treatment initiation and for 6 days thereafter. Contents were cultured quantitatively to enumerate total coliforms. There were no significant differences in total coliform numbers (log10 cfu/g) in the feces between treatments (P = 0.832). There were differences (P < 0.02) in ruminal coliform counts (log10 cfu/mL) between treatments (4.1, 4.3 and 5.0 log10/mL contents in TC, T3 and T9 Treatments, respectively) which tended to increase from the beginning of treatment until the 5th day of treatment (P < 0.05). Overall, we did not obtain the expected results with oral administration of sodium chloride at the applied doses. By comparing the trends in coliform populations in the rumen contents in all treatments, there was an increase over the days. The opposite trend occurred in the feces, due mainly to differences among rumen contents and feces in ewes administered the T9 treatment (P = 0.06). These results suggest that the low chlorate doses used here were suboptimal for the control of coliforms in the gastrointestinal tract of ewes.  相似文献   

14.
Conventional wastewater treatment plants (WWTPs) are not able to remove completely some emerging contaminants, such as residual pharmaceutical compounds (PCs) with potential ecotoxicity to water bodies. An advanced bio-oxidation process (ABOP) using white-rot fungi (WRF) has been proposed as alternative biological treatment for degradation of non-biodegradable compounds. A synthetic and real wastewater spiked with 12 PCs at 50 μg L?1 was treated by means of ABOP based on WRF in a rotating biological contactor (RBC) at 1 day of hydraulic retention time (HRT). The ABOP achieved a remarkable biological performance in terms of TOC removal and reduction of N-NH4 + and P-PO4 3? nutrients. Likewise, 5 of the 12 PCs were eliminated with removal efficiencies ranging from 80 to 95%, whereas 6 of 12 PCs were eliminated with removal values ranging from 50 to 70%. The anaerobic digestion of the fungal sludge generated upon the treatment was also evaluated, obtaining a methane yield of 250 mL CH4 gVS ?1. These results evidenced that the proposed ABOP is a promising alternative for the sustainable wastewater treatment of urban effluents, combining advanced oxidation with biological operation for the removal of emerging PCs and energy recovery.  相似文献   

15.
It has been shown that manganese dioxide (MnO2) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO2-mediated systems were still unclear. In this study, it was proven that nano-MnO2 were effective in transforming triclosan under acidic conditions (pH 3.5–5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k?=?0.0599–1.5314 h?1) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO2 was enhanced in the presence of low-concentration humic acid (1–10 mg L?1). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO2-mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO2. A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO2 in complex water matrices.  相似文献   

16.
In the present study, selected advanced oxidation processes (AOPs)—namely, photo-Fenton (with Fe2+, Fe3+, and potassium ferrioxalate—FeOx—as iron sources), solar photo-Fenton, Fenton, and UV/H2O2—were investigated for degradation of the antineoplastic drug mitoxantrone (MTX), frequently used to treat metastatic breast cancer, skin cancer, and acute leukemia. The results showed that photo-Fenton processes employing Fe(III) and FeOx and the UV/H2O2 process were most efficient for mineralizing MTX, with 77, 82, and 90 % of total organic carbon removal, respectively. MTX probably forms a complex with Fe(III), as demonstrated by voltammetric and spectrophotometric measurements. Spectrophotometric titrations suggested that the complex has a 2:1 Fe3+:MTX stoichiometric ratio and a complexation constant (K) of 1.47 × 104 M–1, indicating high MTX affinity for Fe3+. Complexation partially inhibits the involvement of iron ions and hence the degradation of MTX during photo-Fenton. The UV/H2O2 process is usually slower than the photo-Fenton process, but, in this study, the UV/H2O2 process proved to be more efficient due to complexing of MTX with Fe(III). The drug exhibited no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cells when oxidized by UV/H2O2 or by UV/H2O2/FeOx at the concentrations tested.  相似文献   

17.
The removal of radiocontrast agent diatrizoic acid (DIA) from water was performed using photo-Fenton (PF) process. First, the effect of H2O2 dosage on mineralization efficiency was determined using ultraviolet (UV) irradiation. The system reached a maximum mineralization degree of 60 % total organic carbon (TOC) removal at 4 h with 20 mM initial H2O2 concentration while further concentration values led to a decrease in TOC abatement efficiency. Then, the effect of different concentrations of Fenton’s reagents was studied for homogeneous Fenton process. Obtained results revealed that 0.25 mM Fe3+ and 20 mM H2O2 were the best conditions, achieving 80 % TOC removal efficiency at 4 h treatment. Furthermore, heterogeneous PF treatment was developed using iron-activated carbon as catalyst. It was demonstrated that this catalyst is a promising option, reaching 67 % of TOC removal within 4 h treatment without formation of iron leachate in the medium. In addition, two strategies of enhancement for process efficiency are proposed: coupling of PF with electro-Fenton (EF) process in two ways: photoelectro-Fenton (PEF) or PF followed by EF (PF-EF) treatments, achieving in both cases the complete mineralization of DIA solution within only 2 h. Finally, the Microtox tests revealed the formation of more toxic compounds than the initial DIA during PF process, while, it was possible to reach total mineralization by both proposed alternatives (PEF or PF-EF) and thus to remove the toxicity of DIA solution.  相似文献   

18.
The search for novel microorganisms able to degrade olive mill wastewaters (OMW) and withstand the toxic effects of the initially high phenolic concentrations is of great scientific and industrial interest. In this work, the possibility of reducing the phenolic content of OMW using new isolates of fungal strains (Coriolopsis gallica, Bjerkandera adusta, Trametes versicolor, Trichoderma citrinoviride, Phanerochaete chrysosporium, Gloeophyllum trabeum, Trametes trogii, and Fusarium solani) was investigated. In vitro, all fungal isolates tested caused an outstanding decolorization of OMW. However, C. gallica gave the highest decolorization and dephenolization rates at 30 % v/v OMW dilution in water. Fungal growth in OMW medium was affected by several parameters including phenolic compound concentration, nitrogen source, and inoculum size. The optimal OMW medium for the removal of phenolics and color was with the OMW concentration (in percent)/[(NH4)2SO4]/inoculum ratio of 30:6:3. Under these conditions, 90 and 85 % of the initial phenolic compounds and color were removed, respectively. High-pressure liquid chromatography analysis of extracts from treated and untreated OMW showed a clear and substantial reduction in phenolic compound concentrations. Phytotoxicity, assessed using radish (Raphanus sativus) seeds, indicated an increase in germination index of 23–92 % when a 30 % OMW concentration was treated with C. gallica in different dilutions (1/2, 1/4, and 1/8).
Figure
?  相似文献   

19.
The effect of ozone fumigation on the reduction of difenoconazole residue on strawberries was studied. Strawberries were immersed in 1.0 L of aqueous solution containing 400 μL of the commercial product (250 g L?1 of difenoconazole) for 1 min. Then, they were dried and exposed to ozone gas (O3) at concentrations of 0.3, 0.6 and 0.8 mg L?1 for 1 h. The ozone fumigation treatments reduced the difenoconazole residue on strawberries to concentrations below 0.5 mg kg?1, which corresponds to a 95% reduction. The strawberries treated with ozone and the control group, which was not treated with ozone, were stored at 4°C for 10 days. Some characteristics of the fruit were monitored throughout this period. Among these, pH, weight loss and total color difference did not change significantly (P > 0.05). The fumigation with ozone significantly affected the soluble solids, titratable acidity and ascorbic acid content (vitamin C) of the strawberries preventing a sharp reduction of these parameters during storage.  相似文献   

20.
The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe+2, pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2?=?400 mg/L, Fe+2?=?40 mg/L, pH?=?3, irradiation time?=?150 min, and temperature?=?30 °C) for 1,000 mg/L oil load was found to be 72 %. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R 2?=?0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe+2, pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号