共查询到20条相似文献,搜索用时 15 毫秒
1.
Forecasting New Zealand Mudsnail invasion range: model comparisons using native and invaded ranges. 总被引:2,自引:0,他引:2
Evaluations of the potential distribution of invasive species can increase the efficiency of their management by focusing prevention measures. Generally, ecological models are built using occurrence data from a species' native range to predict the distribution in areas that the species may invade. However, historical and geographical constraints can limit a species' native distribution. Genetic Algorithm for Rule-set Production (GARP), an ecological niche modeling program, was used to predict the potential distribution of the invasive, freshwater New Zealand mudsnail, Potamopyrgus antipodarum, in Australia and North America. We compared the strength of the predictions made by models built with data from the snail's native range in New Zealand to models built with data from the locations invaded by the species. A time-series analysis of the Australian models demonstrated that range-of-invasion data can make better predictions about the potential distribution of invasive species than models built with native range data. Large differences among the model forecasts indicate that uncritical choice of the data set used in training the GARP models can result in misleading predictions. The models predict a large expansion in the range of P. antipodarum in both Australia and North America unless prevention measures are implemented rapidly. 相似文献
2.
Elizabeth A Leger 《Ecological applications》2008,18(5):1226-1235
Changes in the species composition of biotic communities may alter patterns of natural selection occurring within them. Native perennial grass species in the Intermountain West are experiencing a shift in the composition of interspecific competitors from primarily perennial species to an exotic, annual grass. Thus traits that confer an advantage to perennial grasses in the presence of novel annual competitors may evolve in invaded communities. Here I show that such traits are apparent in populations of a native perennial grass, big squirreltail (Elymus multisetus M.E. Jones), exposed to cheatgrass (Bromus tectorum L.) competitors. Dormant big squirreltail plants were collected from cheatgrass-invaded and uninvaded sites near Bordertown, California, USA, a mid-elevation (1600 m) sagebrush community, and transplanted into pots in a greenhouse. Individual plants were split into equal halves. One half was grown with competition from cheatgrass, and the other half was grown without competition. Plants collected from invaded sites responded more quickly to watering, growing more leaves in the first 10 days after transplanting. In addition, big squirreltail plants collected from invaded areas experienced a smaller decrease in plant size when grown with competition than did plants collected from uninvaded areas. Accordingly, while there were fewer big squirreltail individuals in the invaded sites, they were more competitive with cheatgrass than were the more abundant conspecifics in nearby uninvaded areas. It is possible that annual grasses were the selective force that caused these population differences, which may contribute to the long-term persistence of the native populations. While it is tempting to restore degraded areas to higher densities of natives (usually done by bringing in outside seed material), such actions may impede long-term adaptation to new conditions by arresting or reversing the direction of ongoing natural selection in the resident population. If hot spots of rapid evolutionary change can be identified within invaded systems, these areas should be managed to promote desirable change and could serve as possible sources of restoration material or reveal traits that should be prioritized during the development of restoration seed material. 相似文献
3.
When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants 总被引:2,自引:0,他引:2
An important question in the study of biological invasions is the degree to which successful invasion can be explained by release from control by natural enemies. Natural enemies dominate explanations of two alternate phenomena: that most introduced plants fail to establish viable populations (biotic resistance hypothesis) and that some introduced plants become noxious invaders (natural enemies hypothesis). We used a suite of 18 phylogenetically related native and nonnative clovers (Trifolium and Medicago) and the foliar pathogens and invertebrate herbivores that attack them to answer two questions. Do native species suffer greater attack by natural enemies relative to introduced species at the same site? Are some introduced species excluded from native plant communities because they are susceptible to local natural enemies? We address these questions using three lines of evidence: (1) the frequency of attack and composition of fungal pathogens and herbivores for each clover species in four years of common garden experiments, as well as susceptibility to inoculation with a common pathogen; (2) the degree of leaf damage suffered by each species in common garden experiments; and (3) fitness effects estimated using correlative approaches and pathogen removal experiments. Introduced species showed no evidence of escape from pathogens, being equivalent to native species as a group in terms of infection levels, susceptibility, disease prevalence, disease severity (with more severe damage on introduced species in one year), the influence of disease on mortality, and the effect of fungicide treatment on mortality and biomass. In contrast, invertebrate herbivores caused more damage on native species in two years, although the influence of herbivore attack on mortality did not differ between native and introduced species. Within introduced species, the predictions of the biotic resistance hypothesis were not supported: the most invasive species showed greater infection, greater prevalence and severity of disease, greater prevalence of herbivory, and greater effects of fungicide on biomass and were indistinguishable from noninvasive introduced species in all other respects. Therefore, although herbivores preferred native over introduced species, escape from pest pressure cannot be used to explain why some introduced clovers are common invaders in coastal prairie while others are not. 相似文献
4.
Cooperation in breeding by nonreproductive wrens: kinship,reciprocity, and demography 总被引:3,自引:0,他引:3
Summary Stripe-backed wrens (Campylorhynchus nuchalis) often live as adults in large groups on permanent, communally defended territories. Nonbreeding adults cooperate in rearing the young of a single breeding pair; this aid substantially increases the reproductive success of the breeders. In a 6-year study in Venezuela of a completely colorbanded population of 25–30 groups, most adults participated in breeding only as helpers and priority to breeding status was strictly age-determined. Detailed behavioral observations at breeding nests with nestlings showed that, in a sample of 100, helpers nearly always contributed as much to the care of young as breeders. Further, aid-giving does not vary systematically with relatedness of ycung to helpers or with probability of future reciprocation by young. Young being raised are most often at least half siblings of helpers, but seldom return aid to adults that helped raise them. Even adopted helpers collaborate fully. Patterns of demography and dispersal show slow turnover of breeders, delayed reproduction, and a viscous population structure.Application of Hamilton's condition for selection for aid-giving reveals that most individuals in this population can maximize inclusive fitness in the first 2 years by helping instead of breeding. Variation in helping effort and in age of first breeding is related to variation in natal group size and competition resulting from variable demographic neighborhoods in different years or in different parts of the population. Because reciprocation in the form of specific alliance formation among nonreproductives is uncommon, nonspecific reciprocity between cohorts and kin selection account well for the observed pattern of age-dependence in first breeding. Nondiscriminating helping in this population is associated with stable monogamous pair boncs, stable territory boundaries and group membership, strict seniortiy for breeding position, high viscosity and consistent effectiveness of aid. Under these circumstances, very simple behavioral rules amounting to nearly automatic helping seem sufficient to confer critical inclusive fitness gain on helpers. 相似文献
5.
The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a notorious rangeland weed that exhibited regional declines in the early 2000s, attributed to drought by some and to successful biocontrol by others. We initiated an experiment to quantify the effects of the biocontrol agent, Cyphocleonus achates, on Ce. stoebe and its interaction with a dominant native grass competitor, Pseudoroegneria spicata, under contrasting precipitation conditions. Plots containing monocultures of each plant species or equal mixtures of the two received factorial combinations of Cy. achates herbivory (exclusion or addition) and precipitation (May-June drought or "normal," defined by the 50-year average) for three years. Cy. achates herbivory reduced survival of adult Ce. stoebe plants by 9% overall, but this effect was stronger under normal precipitation compared to drought conditions, and stronger in mixed-species plots compared to monocultures. Herbivory had no effect on Ce. stoebe per capita seed production or on recruitment of seedlings or juveniles. In normal-precipitation plots of mixed composition, greater adult mortality due to Cy. achates herbivory resulted in increased recruitment of new adult Ce. stoebe. Due to this compensatory response to adult mortality, final Ce. stoebe densities did not differ between herbivory treatments regardless of context. Experimental drought reduced adult Ce. stoebe survival in mixed-species plots but did not impede recruitment of new adults or reduce final Ce. stoebe densities, perhaps due to the limited duration of the treatment. Ce. stoebe strongly depressed P. spicata reproduction and recruitment, but these impacts were not substantively alleviated by herbivory on Ce. stoebe. Population-level compensation by dominant plants may be an important factor inhibiting top-down effects in herbivore-driven and predator-driven cascades. 相似文献
6.
The hemlock woolly adelgid (HWA, Adelges tsugae Annand) is currently causing a severe decline in vitality and survival of eastern hemlock in North American forests. We analyzed the effects of light HWA infestation on vertical energy and nutrient fluxes from the canopy to the forest floor. Canopy throughfall, litter lysimeters, and laboratory litter microcosms were used to examine the effects of HWA-affected and unaffected throughfall on litter type, leachate, and litter chemistry. Early in the season adelgid infestation caused higher dissolved organic carbon (DOC; +24.6%), dissolved organic nitrogen (DON; +28.5%), and K (+39.3%) fluxes and lower inorganic nitrogen fluxes (-39.8%) in throughfall and in adjacent litter solutions collected beneath infested compared to uninfested trees. Needle litter collected beneath uninfested hemlock had significantly lower N concentrations compared to needles collected beneath infested trees, while no difference in N concentrations was found in birch litter. Bacteria were significantly more abundant on hemlock and birch litter beneath infested trees, while yeasts and filamentous fungi showed no consistent response to HWA throughfall. Litter microcosms showed that less DOC was leaching from birch than from hemlock needles when exposed to HWA throughfall. Overall, NH4-N and DON leachate concentrations were higher from birch than from hemlock litter. Thus, HWA-affected throughfall leads to qualitative and quantitative differences in nitrogen export from the litter layer. The N concentration of hemlock litter did not change with time, but the N concentration in birch litter increased significantly during the course of the experiment, especially when HWA-affected throughfall was applied. We suggest a nonlinear conceptual model for the temporal and vertical transition of energy and nutrient fluxes relative to progressing HWA infestation from a pure hemlock to a birch/maple-dominated forest. Progressive needle loss and changes in needle chemistry are likely to produce a humped-shaped DOC curve, while N fluxes initially decrease as infestation continues but rise eventually with hemlock decline and immigration of hardwood species. These findings suggest that it is necessary to understand the biology and specific physiological/trophic effects of exotic pests on their hosts and associated ecosystem processes in order to decipher the temporal dynamics, direction of change, and functional consequences. 相似文献
7.
Esteban R Suárez Timothy J Fahey Joseph B Yavitt Peter M Groffman Patrick J Bohlen 《Ecological applications》2006,16(1):154-165
A field study was conducted to evaluate the effects of exotic earthworm invasions on the rates of leaf litter disappearance in a northern hardwood forest in southcentral New York, USA. Specifically, we assessed whether differences in litter quality and the species composition of exotic earthworm communities affected leaf litter disappearance rates. Two forest sites with contrasting communities of exotic earthworms were selected, and disappearance rates of sugar maple and red oak litter were estimated in litter boxes in adjacent earthworm-free, transition, and earthworm-invaded plots within each site. After 540 days in the field, 1.7-3 times more litter remained in the reference plots than in the earthworm-invaded plots. In the earthworm-invaded plots, rates of disappearance of sugar maple litter were higher than for oak litter during the first year, but by the end of the experiment, the amount of sugar maple and oak litter remaining in the earthworm-invaded plots was identical within each site. The composition of the earthworm communities significantly affected the patterns of litter disappearance. In the site dominated by the anecic earthworm Lumbricus terrestris and the endogeic Aporrectodea tuberculata, the percentage of litter remaining after 540 days (approximately 17%) was significantly less than at the site dominated by L. rubellus and Octolasion tyrtaeum (approximately 27%). This difference may be attributed to the differences in feeding behavior of the two litter-feeding species: L. terrestris buries entire leaves in vertical burrows, whereas L. rubellus usually feeds on litter at the soil surface, leaving behind leaf petioles and veins. Our results showed that earthworms not only accelerate litter disappearance rates, but also may reduce the differences in decomposition rates that result from different litter qualities at later stages of decay. Similarly, our results indicate that earthworm effects on decomposition vary with earthworm community composition. Furthermore, because earthworm invasion can involve a predictable shift in community structure along invasion fronts or through time, the community dynamics of invasion are important in predicting the spatial and temporal effects of earthworm invasion on litter decomposition, especially at later stages of decay. 相似文献
8.
9.
The identity of an individual patch as a source or a sink within a metapopulation is a function of its ability to produce individuals and to disperse them to other patches. In marine systems patch identity is very often defined by dispersal ability alone—upstream patches are sources—while issues of variable habitat quality (which affects local production) are ignored. This can have important ramifications for the science of marine reserve siting. This study develops a spatially explicit source–sink metapopulation model for reef fish and uses it to evaluate the relative importance of connectivity versus demography and how this depends upon the level of local larval retention and the strength of density-dependent recruitment. Elasticity analyses indicated that patch contribution (source or sink) was more sensitive to demographic parameters (particularly survival) than connectivity and this effect was conserved even under strong levels of density-dependence and was generally strengthened as local retention increased. Variability in the relationship between parameter elasticity and local retention was shown to be dependent upon the magnitude of connectivity for an individual patch relative to a critical connectivity value. The proportion of larvae lost due to transport processes was an important parameter which directly affected the magnitude of this critical connectivity value. Patches with connectivity values less than the critical value contributed to the metapopulation largely via production (i.e., local demographics most important). As local retention increased, so did the importance of demographic parameters in these patches. Patches with connectivity values greater than the critical value contributed largely via dispersal of larvae and thus the importance of local demographics decreased as local retention increased. 相似文献
10.
There is a growing awareness that cyclic population dynamics in vertebrate species are driven by a complex set of interactions rather than a single causal factor. While theory suggests that direct host-parasite interactions may destabilise population dynamics, the interaction between host and parasite may also influence population dynamics through indirect effects that result in delayed responses to either density or to life-history traits. Using empirical data on mountain hares (Lepus timidus) infected with a nematode parasite (Trichostrongylus retortaeformis), we developed an individual-based model (IBM) that incorporated direct effects and delayed life-history effects (DLHEs) of a macroparasite, alternative transmission mechanisms and seasonality in host population dynamics. The full model describes mean characteristics of observed mountain hare time series and parasite abundance, but by systematically removing model structure we dissect out dynamic influences of DLHEs. The DLHEs were weakly destabilising, increasing the propensity for cyclic dynamics and suggesting DLHEs could be important processes in host-parasite systems. Further, by modifying model structure we identify a strong influence of parasite transmission mechanism on host population stability, and discuss the implications for parasite aggregation mechanisms, host movement and natural geographical variation in host population dynamics. The effect of T. retortaeformis on mountain hares likely forms part of a complex set of interactions that lead to population cycles. 相似文献
11.
入侵植物对土壤环境的影响是植物竞争取胜的重要生态策略之一,而选择合适的植物可以替代控制和抵御外来植物的入侵。比较了高丹草、向日葵、紫花苜蓿和多年生黑麦草4种植物与黄顶菊单种和混种后不同时期的土壤养分和土壤酶活性变化规律。结果表明:(1)黄顶菊单独种植根区土壤NH4+-N、NO3-N含量均显著低于紫花苜蓿和黄顶菊混种群落,其有效磷含量显著低于高丹草和黄顶菊混种群落;(2)紫花苜蓿和黄顶菊混种群落土壤脲酶、磷酸酶、蔗糖酶活性均显著高于黄顶菊单种群落。因此,在本试验条件下,高丹草、紫花苜蓿对土壤氮素转化利用能力比黄顶菊高,且能竞争性抑制黄顶菊对土壤磷素的吸收,利于实现对黄顶菊的替代控制。 相似文献
12.
Population growth and decline are particularly sensitive to changes in three key life-history parameters: annual productivity, juvenile survival, and adult survival. However, for many species these parameters remain unknown. For example, although grassland songbirds are imperiled throughout North America, for this guild, only a small number of studies have assessed these parameters. From 2002 to 2006, in the agricultural landscape of the Champlain Valley of Vermont and New York, USA, we studied Savannah Sparrow (Passerculus sandwichensis) and Bobolink (Dolichonyx oryzivorus) demography on four grassland treatments: (1) early-hayed fields cut before 11 June and again in early- to mid-July; (2) middle-hayed fields cut once between 21 June and 10 July; (3) late-hayed fields cut after 1 August; and (4) rotationally grazed pastures. We assessed whether these treatments affected adult apparent survival (phi) and recruitment (f), how sensitive these parameters were to the presence of nonbreeders and local dispersal, and the populations' ability to persist in these four habitats. On average, birds using late-hayed fields had > 25% higher apparent survival than those on the more intensively managed early-hayed, middle-hayed, and grazed fields. Overall male phi was 35% higher than female phi, and Savannah Sparrow phi was 44% higher than Bobolink phi. Across all analyses and treatments, apparent survival estimates were 0.58-0.85 for male and 0.48-0.71 for female Savannah Sparrows, and 0.52-0.70 for male and 0.19-0.55 for female Bobolinks. For males of both species, potential nonbreeders decreased the precision of and lowered apparent survival estimates by 25%; female estimates showed little variation with the inclusion of nonbreeders. Inclusion of local dispersal observations increased apparent survival estimates and, in many cases, increased precision, though the effect was stronger for Savannah Sparrows than for Bobolinks, and also stronger for males than for females. High Savannah Sparrow apparent survival rates resulted in stable or near stable populations (lambda approximately 1), particularly in late-hayed and grazed fields, while low Bobolink apparent survival rates resulted in strongly declining populations (lambda < 1) in all treatments. 相似文献
13.
J. Michael Reed Jeffrey R. Walters Ted E. Emigh D. Erran Seaman 《Conservation biology》1993,7(2):302-308
Loss of genetic variability in isolated populations is an important issue for conservation biology. Most studies involve only a single population of a given species and a single method of estimating rate of loss. Here we present analyses for three different Red-cockaded Woodpecker ( Picoides borealis ) populations from different geographic regions. We compare two different models for estimating the expected rate of loss of genetic variability, and test their sensitivity to model parameters. We found that the simpler model (Reed et al. 1988) consistently estimated a greater rate of loss of genetic variability from a population than did the Emigh and Pollak (1979) model. The ratio of effective population size (which describes the expected rate of loss of genetic variability) to breeder population size varied widely among Red-cockaded Woodpecker populations due to geographic variation in demography. For this species, estimates of effective size were extremely sensitive to survival parameters, but not to the probability of breeding or reproductive success. Sensitivity was sufficient that error in estimating survival rates in the field could easily mask true population differences in effective size. Our results indicate that accurate and precise demographic data are prerequisites to determining effective population size for this species using genetic models, and that a single estimate of rate of loss of genetic variability is not valid across populations. 相似文献
14.
Hugh S Robinson Robert B Wielgus Hilary S Cooley Skye W Cooley 《Ecological applications》2008,18(4):1028-1037
Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (> 2000 km2) has reduced densities, hunting of smaller areas (i.e., game management units, < 1000 km2), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (< 1000 km2) and to gauge whether population control was achieved (lambda < or = 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (lambda > or = 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, lambda(OM) = 1.09), masking a decrease in the female component (lambda(OF) = 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas. 相似文献
15.
Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis 总被引:5,自引:0,他引:5
Morris WF Hufbauer RA Agrawal AA Bever JD Borowicz VA Gilbert GS Maron JL Mitchell CE Parker IM Power AG Torchin ME Vázquez DP 《Ecology》2007,88(4):1021-1029
Plants engage in multiple, simultaneous interactions with other species; some (enemies) reduce and others (mutualists) enhance plant performance. Moreover, effects of different species may not be independent of one another; for example, enemies may compete, reducing their negative impact on a plant. The magnitudes of positive and negative effects, as well as the frequency of interactive effects and whether they tend to enhance or depress plant performance, have never been comprehensively assessed across the many published studies on plant-enemy and plant-mutualist interactions. We performed a meta-analysis of experiments in which two enemies, two mutualists, or an enemy and a mutualist were manipulated factorially. Specifically, we performed a factorial meta-analysis using the log response ratio. We found that the magnitude of (negative) enemy effects was greater than that of (positive) mutualist effects in isolation, but in the presence of other species, the two effects were of comparable magnitude. Hence studies evaluating single-species effects of mutualists may underestimate the true effects found in natural settings, where multiple interactions are the norm and indirect effects are possible. Enemies did not on average influence the effects on plant performance of other enemies, nor did mutualists influence the effects of mutualists. However, these averages mask significant and large, but positive or negative, interactions in individual studies. In contrast, mutualists ameliorated the negative effects of enemies in a manner that benefited plants; this overall effect was driven by interactions between pathogens and belowground mutualists (bacteria and mycorrhizal fungi). The high frequency of significant interactive effects suggests a widespread potential for diffuse rather than pairwise coevolutionary interactions between plants and their enemies and mutualists. Pollinators and mycorrhizal fungi enhanced plant performance more than did bacterial mutualists. In the greenhouse (but not the field), pathogens reduced plant performance more than did herbivores, pathogens were more damaging to herbaceous than to woody plants, and herbivores were more damaging to crop than to non-crop plants (suggesting evolutionary change in plants or herbivores following crop domestication). We discuss how observed differences in effect size might be confounded with methodological differences among studies. 相似文献
16.
Neighborhood and habitat effects on vital rates: expansion of the Barred Owl in the Oregon coast ranges 总被引:1,自引:0,他引:1
In this paper, we modify dynamic occupancy models developed for detection-nondetection data to allow for the dependence of local vital rates on neighborhood occupancy, where neighborhood is defined very flexibly. Such dependence of occupancy dynamics on the status of a relevant neighborhood is pervasive, yet frequently ignored. Our framework permits joint inference about the importance of neighborhood effects and habitat covariates in determining colonization and extinction rates. Our specific motivation is the recent expansion of the Barred Owl (Strix varia) in western Oregon, USA, over the period 1990-2010. Because the focal period was one of dramatic range expansion and local population increase, the use of models that incorporate regional occupancy (sources of colonists) as determinants of dynamic rate parameters is especially appropriate. We began our analysis of 21 years of Barred Owl presence/nondetection data in the Tyee Density Study Area (TDSA) by testing a suite of six models that varied only in the covariates included in the modeling of detection probability. We then tested whether models that used regional occupancy as a covariate for colonization and extinction outperformed models with constant or year-specific colonization or extinction rates. Finally we tested whether habitat covariates improved the AIC of our models, focusing on which habitat covariates performed best, and whether the signs of habitat effects are consistent with a priori hypotheses. We conclude that all covariates used to model detection probability lead to improved AIC, that regional occupancy influences colonization and extinction rates, and that habitat plays an important role in determining extinction and colonization rates. As occupancy increases from low levels toward equilibrium, colonization increases and extinction decreases, presumably because there are more and more dispersing juveniles. While both rates are affected, colonization increases more than extinction decreases. Colonization is higher and extinction is lower in survey polygons with more riparian forest. The effects of riparian forest on extinction rates are greater than on colonization rates. Model results have implications for management of the invading Barred Owl, both through habitat alteration and removal. 相似文献
17.
18.
Four populations of the native annual grassTriplasis purpurea were surveyed on coastal beaches along the south shore of Staten Island, NY, to determine the potential of this species to
colonize shoreline habitats mostly devoid of other vegetation. If the species can establish and maintain dense populations,
it may have conservation value for urban beaches disturbed by human activities. For two populations, survivorship, growth,
and reproduction were monitored at different distances from shore to determine the ability of this species to maintain viable
populations. At three sites,T. purpurea occurred in >75% of all quadrats and the highest density was 1195 plants/m2 at 74 m from shore in one recently disturbed site. Density generally increased with increasing distances from shore at low
tide (from ca. 40–90 m). Plants showed the greatest growth and reproduction at close distances to shore (30–40 m); part of
this effect was due to density in one population, but when density effects were removed statistically, there still remained
a decline in growth and reproduction with increasing distance from shore. Improved vigor nearest to shore may be due to continual
sand deposition. Survivorship showed a Type I pattern, with low mortality throughout the growing season. By colonizing newly-deposited
and continually shifting sands,T. purpurea can contribute to the earliest stages of ecological succession along disturbed beaches in eastern North America and may be
valuable to the development and management of urban coastal plant communities. 相似文献
19.
Ecological costs on local adaptation of an insect herbivore imposed by host plants and enemies 总被引:1,自引:0,他引:1
Herbivore populations may become adapted to the defenses of their local hosts, but the traits that maximize host exploitation may also carry ecological costs. We investigated the patterns and costs of local adaptation in the pine processionary moth, Thaumetopoea pityocampa, to its host plants, Pinus nigra and P. sylvestris. The two hosts differ in needle toughness, a major feeding impediment for leaf-eating insects. We observed a west-to-east gradient of increasing progeny size in the Italian Alps, matching the pattern in toughness of their respective local host plant. Eastern populations that feed on the native P. nigra with tough needles had larger eggs, and neonate larvae with larger head capsules, than western populations that feed on the native P. sylvestris and the introduced P. nigra with softer foliage. In a reciprocal transfer experiment that involved the eastern-most and the western-most populations of T. pityocampa from this region, and excluded natural enemies, we found evidence for local adaptation to the host plant. Specifically, larvae from the western population only performed well when raised on their local hosts with soft needles, and they suffered near-complete mortality on the tough foliage at the eastern site. In contrast, larvae from the eastern population survived equally well at both sites. Local adaptation involved a trade-off between progeny size and the number of offspring. We hypothesized that an additional cost, imposed by natural enemies, may be associated with increased egg size: we also observed a west-to-east gradient of increased egg parasitism. We tested this hypothesis in a common garden by exposing eggs of both populations to parasitism by two native egg parasitoids, Ooencyrtus pityocampae and Baryscapus servadeii. The eastern population suffered a higher level of parasitoid attack by O. pityocampae than the western population, and performance of hatched adults of both parasitoids was enhanced in large eggs. Thus, increased neonate quality (larger eggs yielding larger larvae) confers an advantage on tough foliage but incurs the ecological cost of increased parasitism, which may constrain further adaptation by this herbivore. 相似文献
20.
Animal movement is a pivotal element of many ecological processes, and on ocean-exposed sandy shores, ghost crabs (genus Ocypode) undertake extensive nocturnal forays on the beach surface. Because crab populations are also threatened by vehicle traffic,
indicators that can detect sublethal effects before population declines are manifest are important. To this end, we tested
on a barrier island in Eastern Australia whether movement patterns of crabs respond predictably to disturbance by vehicles;
this was done by tracking (using the spool-and-line technique) crabs at night in beach sections open and closed to traffic.
Beach traffic not only halved population densities of crabs on the unvegetated beach seawards of the dunes, but it also fundamentally
changed crab behaviour and movement: individuals from beach areas rutted by tyre tracks travelled shorter distances in a more
erratic zigzag pattern, and they had significantly compressed home ranges. Such behavioural changes linked to human pressures
could be well suited as an early warning signal for wider negative ecological impacts (as demonstrated by reduced abundances).
They also emphasize the need to incorporate sublethal effects into the assessment and management of ecological changes resulting
from beach recreation. 相似文献