首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although predators affect prey both via consumption and by changing prey migration behavior, the interplay between these two effects is rarely incorporated into spatial models of predator-prey dynamics and competition among prey. We develop a model where generalist predators have consumptive effects (i.e., altering the likelihood of local prey extinction) as well as nonconsumptive effects (altering the likelihood of colonization) on spatially separated prey populations (metapopulations). We then extend this model to explore the effects of predators on competition among prey. We find that generalist predators can promote persistence of prey metapopulations by promoting prey colonization, but predators can also hasten system-wide extinction by either increasing local extinction or reducing prey migration. By altering rates of prey migration, predators in one location can exert remote control over prey dynamics in another location via predator-mediated changes in prey flux. Thus, the effect of predators may extend well beyond the proportion of patches they visit. In the context of prey metacommunities, predator-mediated shifts in prey migration and mortality can shift the competition-colonization trade-off among competing prey, leading to changes in the prey community as well as changes in the susceptibility of prey species to habitat loss. Consequently, native prey communities may be susceptible to invasion not only by exotic prey species that experience reduced amounts of mortality from resident predators, but also by exotic prey species that exhibit strong dispersal in response to generalist native predators. Ultimately, our work suggests that the consumptive and nonconsumptive effects of generalist predators may have strong, yet potentially cryptic, effects on competing prey capable of mediating coexistence, fostering invasion, and interacting with anthropogenic habitat alteration.  相似文献   

2.
Rudolf VH 《Ecology》2007,88(11):2697-2705
Although cannibalism is ubiquitous in food webs and frequent in systems where a predator and its prey also share a common resource (intraguild predation, IGP), its impacts on species interactions and the dynamics and structure of communities are still poorly understood. In addition, the few existing studies on cannibalism have generally focused on cannibalism in the top-predator, ignoring that it is frequent at intermediate trophic levels. A set of structured models shows that cannibalism can completely alter the dynamics and structure of three-species IGP systems depending on the trophic position where cannibalism occurs. Contrary to the expectations of simple models, the IG predator can exploit the resources more efficiently when it is cannibalistic, enabling the predator to persist at lower resource densities than the IG prey. Cannibalism in the IG predator can also alter the effect of enrichment, preventing predator-mediated extinction of the IG prey at high productivities predicted by simple models. Cannibalism in the IG prey can reverse the effect of top-down cascades, leading to an increase in the resource with decreasing IG predator density. These predictions are consistent with current data. Overall, cannibalism promotes the coexistence of the IG predator and IG prey. These results indicate that including cannibalism in current models can overcome the discrepancy between theory and empirical data. Thus, we need to measure and account for cannibalistic interactions to reliably predict the structure and dynamics of communities.  相似文献   

3.
Borer ET  Halpern BS  Seabloom EW 《Ecology》2006,87(11):2813-2820
Eutrophication and predator additions and extinctions are occurring in ecosystems worldwide. Although theory predicts that both will strongly alter the distribution of biomass in whole communities, empirical evidence has not been consolidated to quantitatively determine whether these theoretical predictions are generally borne out in real ecosystems. Here we analyze data from two types of trophic cascade studies, predator removals in factorial combination with fertilization and observed productivity gradients, to assess the role of top-down and bottom-up forces in structuring multi-trophic communities and compare results from these analyses to those from an extensive database of trophic cascade studies. We find that herbivore biomass declines and plant biomass increases in the presence of predators, regardless of system productivity. In contrast, while plants are increased by fertilization, this effect does not significantly increase herbivores in either the presence or absence of predators. These patterns are consistent among marine, freshwater, and terrestrial ecosystems and are largely independent of study size and duration. Thus, top-down effects of predation are transferred through more trophic levels than are bottom-up effects of eutrophication, showing strong asymmetry in the direction of control of biomass distribution in communities.  相似文献   

4.
Allen MR  Vandyke JN  Caceres CE 《Ecology》2011,92(2):269-275
new habitats are created, community assembly may follow independent trajectories, since the relative importance of dispersal limitation, priority effects, species interactions, and environmental gradients can vary as assembly proceeds. Unfortunately, tracking community colonization and composition across decades is challenging. We compiled a multiyear community composition data set and reconstructed past communities with remains from sediment cores to investigate cladoceran assembly dynamics in six older (1920s) and two more recently formed (1950s) lakes. We found that current communities cluster along a gradient of thermal stratification that is known to influence predation intensity. Assembling communities showed evidence for a greater influence of species sorting and a reduced influence of spatial structure since the first colonizations. However, lake community trajectories varied considerably, reflecting different colonization sequences among lakes. In the older lakes, small-bodied cladocerans often arrived much earlier than large-bodied cladocerans, while the two younger lakes were colonized much more rapidly, and one was quickly dominated by a large-bodied species. Thus, by combining contemporary community data with paleoecological records, we show that assembly history influences natural community structure for decades while patterns of ecological sorting develop.  相似文献   

5.
Navarrete SA  Manzur T 《Ecology》2008,89(7):2005-2018
Investigating how food supply regulates the behavior and population structure of predators remains a central focus of population and community ecology. These responses will determine the strength of bottom-up processes through the food web, which can potentially lead to coupled top-down regulation of local communities. However, characterizing the bottom-up effects of prey is difficult in the case of generalist predators and particularly with predators that have large dispersal scales, attributes that characterize most marine top predators. Here we use long-term data on mussel, barnacle, limpet, and other adult prey abundance and recruitment at sites spread over 970 km to investigate individual- and population-level responses of the keystone intertidal sunstar Heliaster helianthus on the coast of Chile. Our results show that this generalist predator responds to changes in the supply of an apparently preferred prey, the competitively dominant mussel Perumytilus purpuratus. Individual-level parameters (diet composition, per capita prey consumption, predator size) positively responded to increased mussel abundance and recruitment, whereas population-level parameters (density, biomass, size structure) did not respond to bottom-up prey variation among sites separated by a few kilometers. No other intertidal prey elicited positive individual predator responses in this species, even though a large number of other prey species was always included in the diet. Moreover, examining predator-prey correlations at approximately 80, 160, and 200 km did not change this pattern, suggesting that positive prey feedback could occur over even larger spatial scales or as a geographically unstructured process. Thus individual-level responses were not transferred to population changes over the range of spatial scales examined here, highlighting the need to examine community regulation processes over multiple spatial scales.  相似文献   

6.
Griswold MW  Lounibos LP 《Ecology》2006,87(4):987-995
Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized.  相似文献   

7.
Hammond JI  Luttbeg B  Sih A 《Ecology》2007,88(6):1525-1535
Predator and prey spatial distributions have important population and community level consequences. However, little is known either theoretically or empirically about behavioral mechanisms that underlie the spatial patterns that emerge when predators and prey freely interact. We examined the joint space use and behavioral rules governing movement of freely interacting groups of odonate (dragonfly) predators and two size classes of anuran (tadpole) prey in arenas containing two patches with different levels of the prey's resource. Predator and prey movement and space use was quantified both when they were apart and together. When apart from predators, large tadpoles strongly preferred the high resource patch. When apart from prey, dragonflies weakly preferred the high resource patch. When together, large prey shifted to a uniform distribution, while predators strongly preferred the high resource patch. These patterns qualitatively fit the predictions of several three trophic level, ideal free distribution models. In contrast, the space use of small prey and predators did not deviate from uniform. Three measures of joint space use (spatial correlations, overlap, and co-occurrence) concurred in suggesting that prey avoidance of predators was more important than predator attraction to prey in determining overall spatial patterns. To gain additional insight into behavioral mechanisms, we used a model selection approach to identify behavioral movement rules that can potentially explain the observed, emergent patterns of space use. Prey were more likely to leave patches with more predators and more conspecific competitors; resources had relatively weak effects on prey movements. In contrast, predators were more likely to leave patches with low resources (that they do not consume) and more competing predators; prey had relatively little effect on predator movements. These results highlight the importance of investigating freely interacting predators and prey, the potential for simple game theory models to predict joint spatial distributions, and the utility of using model choice methods to identify potential key factors that govern movement.  相似文献   

8.
Abstract: Invasions of non‐native species are one of the major causes of losses of native species. In some cases, however, non‐natives may also have positive effects on native species. We investigated the potential facilitative effects of the North American red swamp crayfish (Procambarus clarkii) on the community of predators in southwestern Spain. To do so, we examined the diets of predators in the area and their population trends since introduction of the crayfish. Most predator species consumed red swamp crayfish, which sometimes occurred in over 50% of their diet samples. Moreover, the abundance of species preying on crayfish increased significantly in the area as opposed to the abundance of herbivores and to predator populations in other areas of Europe, where those predators are even considered threatened. Thus, we report the first case in which one non‐native species is both beneficial because it provides prey for threatened species and detrimental because it can drive species at lower trophic levels to extinction. Increases in predator numbers that are associated with non‐native species of prey, especially when some of these predators are also invasive non‐natives, may increase levels of predation on other species and produce cascading effects that threaten native biota at longer temporal and larger spatial scales. Future management plans should include the complexity of interactions between invasive non‐natives and the entire native community, the feasibility of successful removal of non‐native species, and the potential social and economic interests in the area.  相似文献   

9.
Matassa CM  Trussell GC 《Ecology》2011,92(12):2258-2266
Predators can initiate trophic cascades by consuming and/or scaring their prey. Although both forms of predator effect can increase the overall abundance of prey's resources, nonconsumptive effects may be more important to the spatial and temporal distribution of resources because predation risk often determines where and when prey choose to forage. Our experiment characterized temporal and spatial variation in the strength of consumptive and nonconsumptive predator effects in a rocky intertidal food chain consisting of the predatory green crab (Carcinus maenas), an intermediate consumer (the dogwhelk, Nucella lapillus), and barnacles (Semibalanus balanoides) as a resource. We tracked the survival of individual barnacles through time to map the strength of predator effects in experimental communities. These maps revealed striking spatiotemporal patterns in Nucella foraging behavior in response to each predator effect. However, only the nonconsumptive effect of green crabs produced strong spatial patterns in barnacle survivorship. Predation risk may play a pivotal role in determining the small-scale distribution patterns of this important rocky intertidal foundation species. We suggest that the effects of predation risk on individual foraging behavior may scale up to shape community structure and dynamics at a landscape level.  相似文献   

10.
Amarasekare P 《Ecology》2007,88(11):2720-2728
Intraguild predation/parasitism (IGP: competing species preying on or parasitizing each other) is widespread in nature, but the mechanisms by which intraguild prey and predators coexist remain elusive. Theory predicts that a trade-off between resource competition and IGP should allow local niche partitioning, but such trade-offs are expressed only at intermediate resource productivity and cannot explain observations of stable coexistence at high productivity. Coexistence must therefore involve additional mechanisms beside the trade-off, but very little is known about the operation of such mechanisms in nature. Here I present the first experimental test of multiple coexistence mechanisms in a natural community exhibiting IGP. The results suggest that, when resource productivity constrains the competition-IGP trade-off, a temporal refuge for the intraguild prey can not only promote coexistence, but also change species abundances to a pattern qualitatively different from that expected based on the trade-off or a refuge alone. This is the first empirical study to demonstrate a mechanism for why communities with IGP do not lose species diversity in highly productive environments. These results have implications for diversity maintenance in multi-trophic communities, and the use of multiple natural enemies in biological control.  相似文献   

11.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   

12.
Borer ET  Briggs CJ  Holt RD 《Ecology》2007,88(11):2681-2688
Although the canonical concept of intraguild predation evokes images of predators and prey, several subdisciplines within ecology have developed theory not specifically framed in terms of predation and competition and often using system-specific terminology, yet functionally quite similar. Here, we formulate models combining exploitation and competition in predator-prey, host-parasitoid, and host-pathogen communities to compare dynamics, food web structure, and coexistence criteria for these disparate communities. Although dynamic stability in the coexistence region varies strongly among systems, in all cases coexistence of two consumers on a single resource occurs only if the intraguild prey species is more efficient than the intraguild predator at suppressing the abundance of the basal resource, and if the intraguild predator accrues a sufficient gain from attacking the intraguild prey. In addition, equilibrial abundances of all species in all three formulations respond similarly to increases in productivity of the basal resource. Our understanding of predator-prey and parasitoid-host communities has benefited from explicit examination of intraguild predation (IGP) theory, and we suggest that future research examining pathogen communities, in particular, will benefit substantially from explicit recognition of predictions from IGP theory.  相似文献   

13.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

14.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

15.
We tested joint effects of predator loss and increased resource availability on the grazers’ trophic level and the propagation of trophic interactions in a benthic food web by excluding larger predatory fish from cages and manipulating nutrients in the coastal zone of the Baltic Sea. The combination of nutrient enrichment and excluding larger predators induced an increase in medium-sized predatory fish (three-spined stickleback). The meso-predator fish in turn did not change the total abundance of the invertebrate herbivores, but did cause a substantial shift in their community composition towards the dominance of gastropods by reducing amphipods by 40–60%, while gastropods were left unchanged. The shift in grazer composition generated a 23 times higher producer biomass, but only under nutrient enrichment. Our results show that top-predator declines can substantially shift the species composition at the grazers’ level, but that cascading effects on producers by a trophic cascade strongly depend on resource availability.  相似文献   

16.
Otto SB  Berlow EL  Rank NE  Smiley J  Brose U 《Ecology》2008,89(1):134-144
Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.  相似文献   

17.
Barber NA  Marquis RJ 《Ecology》2011,92(3):699-708
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds.  相似文献   

18.
Rudolf VH 《Ecology》2007,88(12):2991-3003
Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.  相似文献   

19.
Thompson CM  Gese EM 《Ecology》2007,88(2):334-346
Trophic level interactions between predators create complex relationships such as intraguild predation. Theoretical research has predicted two possible paths to stability in intraguild systems: intermediate predators either outcompete higher-order predators for shared resources or select habitat based on security. The effects of intraguild predation on intermediate mammalian predators such as swift foxes (Vulpes velox) are not well understood. We examined the relationships between swift foxes and both their predators and prey, as well the effect of vegetation structure on swift fox-coyote (Canis latrans) interactions, between August 2001 and August 2004. In a natural experiment created by the Pinon Canyon Maneuver Site in southeastern Colorado, USA, we documented swift fox survival and density in a variety of landscapes and compared these parameters in relation to prey availability, coyote abundance, and vegetation structure. Swift fox density varied significantly between study sites, while survival did not. Coyote abundance was positively related to the basal prey species and vegetation structure, while swift fox density was negatively related to coyote abundance, basal prey species, and vegetation structure. Our results support the prediction that, under intraguild predation in terrestrial systems, top predator distribution matches resource availability (resource match), while intermediate predator distribution inversely matches predation risk (safety match). While predation by coyotes may be the specific cause of swift fox mortality in this system, the more general mechanism appears to be exposure to predation moderated by shrub density.  相似文献   

20.
We investigated the effects of body size, feeding strategy and depth distribution on the trophic resource partitioning among the 26 dominant fish consumers in a fish assemblage on the central Mediterranean shelf-break. The fish assemblage was structured in two major trophic guilds: epibenthic and zooplanktonic feeders, according to the position of each predator along the benthos–plankton gradient. Within each main guild, the species were segregated along a prey-size or fish-size gradient into five further guilds. Fish size and prey size were strongly correlated, indicating that the prey-size niche can be well explained by predator size. Fish consumers showed a significant negative correlation between the similarity in prey type and the similarity in depth distribution; most species with similar trophic preferences segregated along the depth dimension. The only predators overlapping in both food and depth preferences were those with a more specialist trophic behavior. These results suggest that fish body size and depth preferences are the two main niche dimensions, explaining a large part of the coexistence between the Mediterranean shelf-break fish consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号