首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The use of signals across multiple sensory modalities in communication is common in animals and plants. Determining the information that each signal component conveys has provided unique insights into why multimodal signals evolve. However, how these complex signals are assessed by receivers will also influence their evolution, a hypothesis that has received less attention. Here, we explore multimodal signal assessment in a closely related complex of island flycatchers that have diverged in visual and acoustic signals. Using field experiments that manipulated song and plumage colour, we tested if song, a possible long-range signal, is assessed before plumage colour in conspecific recognition. We find that divergent song and colour are assessed in sequence, and this pattern of sequential assessment is likely mediated by habitat structure and the extent of differences in signal characteristics. A broad survey of the literature suggests that many organisms from a wide range of taxa sequentially assess multimodal signals, with long-range signals attracting conspecifics for further assessment of close-range signals. Our results highlight the need to consider how signals are assessed when understanding multimodal signal evolution. Finally, given the results of our field experiments indicating sequential assessment of divergent song and colour in the recognition of conspecifics, we discuss the consequences of multimodal signal divergence for the origin of species, as changes in signals across different sensory modalities may influence the evolution of premating reproductive isolation.  相似文献   

2.
Animal ritualized displays have been classically viewed as behavioral characters that decrease signal ambiguity or that facilitate the evaluation of costly exhibitions. It has been shown that their prevalence and level of complexity across species can reflect phylogenetic relationships between them, but the adaptive function of these behavioral traits is poorly known. Here, I hypothesize that, given that the efficacy of visual displays basically depends on conspicuousness and level of performance, species with low levels of conspicuousness may be forced to perform more complex varieties of a given display to get the same signal efficiency than other more conspicuous species. Thus, the evolution of display complexity, considered as the level of exaggeration of ritualized movements, may be explained as an adaptive trait and not only by phylogenetic inertia. I illustrate and test this hypothesis with the case of black-and-white plumage patches of pelecaniform birds. As predicted, there was a negative correlation between level of complexity and species conspicuousness (proportion of unmelanized plumage) for two different social displays. This indicates that classical ideas on the adaptiveness of ritualized displays should be considered to understand the present variation in signal form across species, which sheds light on the evolution of multiple signals.  相似文献   

3.
4.
Although studies on the evolution and function of female ornaments have become more numerous in the last years, the majority of these studies were carried out in cases where female ornaments were a smaller and duller version of the ornaments found in males. There are substantially fewer studies on species with female-specific ornaments. However, no study so far investigated the potential of female-specific colouration as a quality signal in birds with conventional sex roles. We studied female-specific ornamentation in a strongly sexually dichromatic species, the upland goose Chloephaga picta leucoptera, in two consecutive years. Male upland geese have white head and breast feathers and black legs, whereas females have reddish-brown head and breast feathers and conspicuous yellow-orange legs. We found that female-specific colouration in upland geese can reliably indicate different aspects of female phenotypic quality. Females with more orange coloured legs and more red-like head colours had higher clutch and egg volumes than females with a paler leg and head colouration, and a more reddish plumage colouration was related to a higher body condition. These relationships provide the theoretic possibility for males to assess female phenotypic quality on the basis of colouration. Furthermore, the females with a more orange-like tarsus colouration had higher plasma carotenoid levels. Both tarsus colouration and carotenoid concentrations of individual females were highly correlated across years, indicating that tarsus colour is a stable signal. Despite this correlation, small individual differences in plasma carotenoid concentrations between the two study years were related to differences in tarsus colouration. We thus show for the first time in a wild bird and under natural conditions that carotenoid-based integument colouration remains consistent between individuals in consecutive years and is also a dynamic trait reflecting individual changes in carotenoid levels. In this species, where pairs form life-long bonds, the honesty of the carotenoid-based integument colouration suggests that it may be a sexually selected female ornament that has evolved through male mate choice.  相似文献   

5.
Male ornamentation is assumed to have evolved primarily from selection by female mate choice. Yet this is only one possible reason for ornament evolution. Ornaments might also be useful in aggressive competition by improving opponent assessment between males, or they might function to enhance signal detection by making males more conspicuous in the environment. We tested both these ideas in territorial Anolis lizards in which female choice is either absent or secondary to males competing for territories that overlap female home ranges. Male tail crests only evolved in species in which territory neighbors were distant, consistent with the signal detection hypothesis. Once the tail crest had evolved, however, it seems to have become a signal in itself, with variation in the frequency and size of tail crests within species correlating with variables predicted by the aggressive competition hypothesis. Our study presents an apparent example of a male ornament in which the selection pressure leading to variation among species in ornament expression is different from the selection pressure acting on variation within species. The Anolis tail crest is therefore likely to be an exaptation. We caution that conclusions made on the evolution of male ornaments are dependent on the phylogenetic perspective adopted by a study. Studies restricted to single species are useful for identifying selection pressures in contemporary settings (i.e., the current utility of traits), but may lead to erroneous conclusions on the factors that initially lead to the origin of traits.  相似文献   

6.
Long-term signal evolution is shaped by a variety of selective pressures including the need to convey additional information or to improve message transfer to specific receivers or through multiple environments. Here, we test the relative importance of information and sensory modality in shaping the long-term evolution of multimodal signals in Sceloporus lizards. To broadcast identity at territorial boundaries, male Sceloporus use both visual motion (headbob) and chemical signals, whereas they use color (blue belly patches) to signal aggression. Using modern phylogenetic comparative methods, we found a negative correlation between evolutionary changes in visual motion (headbobs) and chemical (femoral pore) signals, but only indirect ties between the evolution of color and motion signals (both of which are perceived visually) through viviparity, and no evidence of an evolutionary link between color and chemical signals. We also find a negative correlation between arboreality and chemical signals. Thus, information content (in this case, broadcasting individual identity versus signaling aggression) appears to play a more important role than sensory modality or physical distance in guiding long-term signal evolution. Additional insights into the underlying evolutionary processes are described, illustrating the utility of a phylogenetic approach.  相似文献   

7.
Complex signal function: developing a framework of testable hypotheses   总被引:1,自引:1,他引:1  
The basic building blocks of communication are signals, assembled in various sequences and combinations, and used in virtually all inter- and intra-specific interactions. While signal evolution has long been a focus of study, there has been a recent resurgence of interest and research in the complexity of animal displays. Much past research on signal evolution has focused on sensory specialists, or on single signals in isolation, but many animal displays involve complex signaling, or the combination of more than one signal or related component, often serially and overlapping, frequently across multiple sensory modalities. Here, we build a framework of functional hypotheses of complex signal evolution based on content-driven (ultimate) and efficacy-driven (proximate) selection pressures (sensu Guilford and Dawkins 1991). We point out key predictions for various hypotheses and discuss different approaches to uncovering complex signal function. We also differentiate a category of hypotheses based on inter-signal interactions. Throughout our review, we hope to make three points: (1) a complex signal is a functional unit upon which selection can act, (2) both content and efficacy-driven selection pressures must be considered when studying the evolution of complex signaling, and (3) individual signals or components do not necessarily contribute to complex signal function independently, but may interact in a functional way.Communicated by A. Cockburn  相似文献   

8.
Some mate choice theories propose that only male signals that are honest and condition-dependent can be stable, while another hypothesis states that males evolve signals that exploit the sensory system of females. However, sensory traps might evolve into honest signals if they are differentially costly for males. We tested whether a pre-existing sensory bias for food chemicals explained chemosensory preferences of female Iberian rock lizards for male scents. We manipulated hunger levels of females and found that food-deprived females had increased chemosensory responses to chemical stimuli from both invertebrate prey and femoral secretions of males, but not to control water. Further tests suggested that cholesta-5,7-dien-3-ol (provitamin D3), a lipid found in both prey and males’ scent, may be one of the chemicals eliciting these responses. Moreover, hungry females spent more time on scent marks of males that had experimentally increased cholesta-5,7-dien-3-ol than on scent marks of males alone, whereas for control females this effect was not significant. We suggest that preexisting sensory bias for essential nutrients (i.e., provitamin D) may be the origin of similar female responses to male chemicals. However, previous studies have suggested that the allocation of these chemicals to ornaments is costly and only high quality males can afford it. Therefore, preexisting sensory bias for essential nutrients may further allow the evolution and maintenance of honest sexual displays.  相似文献   

9.
Bird song is a typical sexual trait that may have evolved at least partly to reflect health and vigor. However, the role of pathogens in modulating acoustic communication systems in birds is still less than clear as studies testing the relationship between parasites and song have provided inconsistent results both within and among species. It is often neglected that avian song is complex trait consisting of numerous and variable features with potentially different biological backgrounds. By using meta-analytic approaches to the available intraspecific evidence I demonstrate that different roles are applicable to song traits with different signal design, which could explain, to some extent, the inconsistency of results. I found that condition-dependent, performance-related traits are more closely related to immediate health status, whereas condition-independent features are more likely to be associated with intrinsically determined parasite resistance. Hence, parasitism may mediate the evolution of different acoustic features. Considering the signal function of songs, a communication system depends on the reaction of the receivers, but little is known about how mate choice and male–male competition are affected by parasite-mediated song production. This review of the literature thus suggests that receivers of songs may benefit by responding to these acoustic signals of health through the acquisition of resistance genes, paternal care of superior assistance, success in territory disputes, and the avoidance of directly transmitted parasites.  相似文献   

10.
Schizocosa wolf spiders show tremendous diversity in courtship complexity, with different species employing varying numbers of components within and across sensory modalities. Using a comparative approach, we investigate the importance of each signaling modality in the courtship display of five Schizocosa species (three stridulating and two drumming) by assessing mating success under manipulated signaling environments. Irrespective of the degree of male ornamentation, the three stridulating species exhibit a dependence on the seismic, but not visual, signaling environment for mating success. Mating was independent of signaling environment for the two drumming species. We next ask whether the degree to which each species depends upon a signaling modality for mating (i.e., modality importance) is correlated with the estimated modality-specific signal complexity. We first calculate effect sizes for the influence of seismic versus visual signaling environments on the likelihood to mate for ten Schizocosa species and then use an element-counting approach to calculate seismic and visual signal complexity scores. We use a phylogenetic regression analysis to test two predictions: (1) the importance of seismic signaling is correlated with seismic signal complexity and (2) the importance of visual signaling is correlated with visual signal complexity. We find a significant relationship between visual signal importance and visual signal complexity, but no relationship between seismic signal importance and seismic signal complexity. Finally, we test the hypothesis that selection acts on complexity per se by determining whether seismic and visual signal complexity is correlated across species. We find support for this hypothesis in a significant relationship between seismic and visual signal complexity.  相似文献   

11.
Sexual selection theory predicts that a higher investment in offspring will turn females into the selective sex, while males will compete for accessing and courting them. However, there are exceptions to the rule. When males present a high reproductive investment, sex roles can reverse from typical patterns, turning males into the choosy sex, while females locate males and initiate courtship. In many spiders, males are smaller than females, wandering in search of sedentary females and maximizing the number of copulations. In the present study, we present findings on the sand-dwelling wolf spider, Allocosa brasiliensis, evidencing a reversal in typical courtship roles reported for the first time in spiders. Males were bigger than females. Females located males and initiated courtship. Copulation always occurred in male burrows and took place mainly in long burrows. Males donated their burrows to the females after copulation, closing the entrance before leaving with female cooperation from inside. Males would provide females with a secure place for ovipositing, being exposed to predation and diminishing their future mating possibilities until constructing a new burrow. The cost of vacating the burrow and losing the refuge in an unpredictable habitat, such as sand dunes, would explain the courtship roles reversal in this spider species. Results turn A. brasiliensis as a promising model for discussing the determinants of sex roles and the pressures that drive their evolution and maintenance. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

12.
Complex, highly integrated societies have evolved from simpler societies repeatedly, and the social insects provide an excellent model system for understanding increasing complexity and integration. In the paper wasps, large societies, known as swarm-founding, have evolved repeatedly from smaller societies, known as independent-founding. Swarm-founding colonies have many more queens than independent-founding colonies, which should dramatically reduce relatedness, posing a challenge to cooperation. However, in each instance, swarm-founding species have also evolved a cyclical pattern of queen reduction which elevates relatedness despite high queen numbers. The genus Ropalidia provides an excellent system in which to study the transition to swarm-founding because it has both independent and swarm-founding species. We studied the Australian independent-founding wasp Ropalidia revolutionalis to better understand the evolution of multiple queens and their periodic reductions in swarm-founding wasps. Using microsatellite genetic markers we genotyped queens, workers and brood from 37 colonies and found that while most colonies had a single queen, three of the colonies had multiple queens at or immediately prior to the time of collection. An additional seven colonies had had multiple co-occurring queens earlier in the season. We also found that colonies experienced many queen losses, and that founding queens were gradually lost until they were replaced by a new cohort of daughter queens in many colonies. This pattern is similar to the periodic reductions and replacements in swarm-founding wasps and suggests that multiple queens and queen cycling evolved relatively early in the shift to swarm-founding in Ropalidia.Communicated by R. Page  相似文献   

13.
Abstract:  Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.  相似文献   

14.
Over the past several decades, we have argued that cultural evolution can facilitate the evolution of large-scale cooperation because it often leads to more rapid adaptation than genetic evolution, and, when multiple stable equilibria exist, rapid adaptation leads to variation among groups. Recently, Lehmann, Feldman, and colleagues have published several papers questioning this argument. They analyze models showing that cultural evolution can actually reduce the range of conditions under which cooperation can evolve and interpret these models as indicating that we were wrong to conclude that culture facilitated the evolution of human cooperation. In the main, their models assume that rates of cultural adaption are not strong enough compared to migration to maintain persistent variation among groups when payoffs create multiple stable equilibria. We show that Lehmann et al. reach different conclusions because they have made different assumptions. We argue that the assumptions that underlie our models are more consistent with the empirical data on large-scale cultural variation in humans than those of Lehmann et al., and thus, our models provide a more plausible account of the cultural evolution of human cooperation in large groups.  相似文献   

15.
Facultative joint colony founding by social insects provides opportunities to analyze the roles of genetic and ecological factors in the evolution of cooperation. Although cooperative nesting is observed in range of social insect taxa, the most detailed studies of this behavior have been conducted with Hymenoptera (ants, bees, and wasps). Here, we show that foundress associations in the haplodiploid social thrips Dunatothrips aneurae (Insecta: Thysanoptera) are most often comprised of close relatives (sisters), though groups with unrelated foundresses are also found. Associations among relatives appear to be facilitated by limited female dispersal, which results in viscous population structure. In addition, we found that per capita productivity declined with increasing group size, sex ratios were female-biased, and some female offspring apparently remained in their natal domicile for some time following eclosion. D. aneurae thus exhibits a suite of similarities with eusocial Hymenoptera, providing evidence for the convergent evolution of associated social and life-history traits in Hymenoptera and Thysanoptera.  相似文献   

16.
The idea that natural selection can be meaningfully applied at the group level may be more important than previously thought. This perspective, a modern version of group selection, is called multilevel selection. Multilevel selection theory could incorporate previous explanations for the evolution of cooperation including kin selection. There is general agreement that natural selection favors noncooperators over cooperators in the case of an unstructured population. Therefore, the evolution of cooperation by multilevel selection often requires positive assortment between cooperators and noncooperators. The question is how this positive assortment can arise in the ecological meaning. We constructed an individual-based model of multilevel selection and introduced migration and evolution. The results showed that positive assortment was generated especially when a migration strategy was adopted in which individuals respond specifically to bad environmental conditions. It was also shown that the founder effect in the evolutionary process could further facilitate positive assortment by working with migration. We analyzed assortment by using relatedness defined in group-structured populations. The fact that cooperation was achieved by such migration and by the founder effect highlights the importance of sensitiveness to the ecological environment and of fluctuations in group size, respectively.  相似文献   

17.
Gnathiid isopods are one of the most abundant groups of ectoparasites on coral reef fishes. They, and other isopods, have been shown to significantly affect the health and behaviour of many reef fish. Whether isopod emergence differs among habitats on coral reefs is not known. In this study, we measured emergence rates of parasitic isopods (Gnathiidea and Flabellifera) in six habitats at two sites at Lizard Island during new moon periods in March and December 2004. Isopods were collected from the periphery and centres of micro-reefs, patch reefs, continuous reefs, and from inter-reefal habitats (sand or rubble) with 1 m2 emergence traps. Sites (Casuarina and Coconut Beach) were located on opposite sides of Lizard Island. Live gnathiids were collected with light traps in November 2005 to investigate species differences between sites. At both sites, the most abundant gnathiid species was exclusive to that site. More gnathiid larvae emerged at night, and emergence of fed gnathiids (pranizae) and flabelliferan isopods was almost exclusively nocturnal. Diurnal emergence was greater at Coconut Beach than Casuarina Beach. Although emergence counts were not consistently affected by parameters such as habitat, site, or sampling period, gnathiid size and feeding state were. Where significant differences existed, gnathiids were larger and more often fed over reef borders than centrally. We suggest first stage larvae (Z1) have the largest influence on total abundance and are patchily distributed in accordance with adults from which they have recently hatched. As later stage larvae depend on fish, more successful (fed) and older larvae are found on the edges of reefs where appropriate hosts may be more abundant, or predation is lower. Gnathiids were over-dispersed in all habitats investigated, including apparently homogeneous beds of coral rubble and sand. This indicates that their distributions may be better predicted by very fine scale differences in substrate or that aggregations are the result of gregariousness and may be difficult to predict on the basis of substrate. Emergence traps collected comparatively few parasitic flabelliferan isopods. This community differed greatly from the previously described community of scavenging isopods at Lizard Island. These differences are probably the result of differences in trapping methodology.  相似文献   

18.
In many vertebrate radiations, food partitioning among closely related taxa is a key factor in both the maintenance of species diversity and the process of diversification. We compared diet composition and jaw morphology of 18 New Zealand triplefin species (F. Tripterygiidae) to examine whether species have diversified along a trophic axis. These fishes predominantly utilised small, mobile benthic invertebrates, and interspecific differences in diet composition appeared to be mainly attributable to habitat- or size-dependent feeding behaviour. Although there were differences in the relative size of the bones comprising the oral jaw apparatus between species, the majority showed an apparatus consistent with a relatively high velocity, low force jaw movement indicative of a diet of evasive prey. Phylogenetic comparative analyses showed that the evolution of jaw lever ratios and diet breadth was best explained by a non-directional model in which character changes have occurred randomly and independent of phylogeny. The mode of diet breadth evolution was gradual and the tempo has not accelerated or slowed down over time. The mode of evolution for the jaw lever ratios has been gradual for the opening but punctuated for the closing levers, suggesting that evolutionary changes have occurred rapidly for the latter trait. The tempo of trait evolution for the jaw opening levers has not accelerated or slowed down over time, while the tempo for the jaw closing levers has accelerated towards the tips of the tree, which is suggestive of species level adaptation. The lack of phylogenetic signal in diet breadth and jaw lever ratios appears most likely to be a correlated response to the marked habitat diversification in this group, and is thus the passive outcome of prey availability in species-specific habitat types. Overall, the trophic ecology of New Zealand’s triplefin fauna parallels the generalist strategy typical of the family worldwide, suggesting that trophic resource partitioning has not been an important factor in the evolution of these fishes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Male intrasexual competition and female choice explain the evolution of male ornaments. Except in sex-role-reversed taxa, female ornaments have been regarded as an epiphenomenon of genetic correlation, with no female-specific function or independently selected basis. Females from species with conventional sex roles may still experience some degree of female–female competition and male choice that could explain the persistence of female ornaments. We studied the effect of female competition on the expression of a sexually dimorphic communication signal. In the electric fish Brachyhypopomus gauderio, both sexes produce an electric signal pulse for communication and electrolocation. Male electric pulses are longer in duration and greater in amplitude than those of females. As competition increases, males further enhance their signals in response to elevated androgen levels. We explored whether females respond to social competition as males do, by enhancing their communication signals and increasing androgen levels. We measured amplitude and duration of the electric signal pulse, and testosterone levels in female B. gauderio in their natural habitat in Uruguay and estimated social competition by calculating population density and adult sex ratio (ASR). In the lab, we manipulated ASR and population density independently to separate these factors and eliminate seasonal confounds. Under both field and lab conditions, signal pulse amplitude increased with population density, while pulse duration increased with female bias in ASR. In the field, but not the lab, androgen levels increased when ASR was female biased. Our findings indicate that the socially mediated mechanism of signal regulation is shared by the sexes, although whether androgens regulate this signal plasticity in females remains unclear.  相似文献   

20.
Theoretical investigations and quasi-experimental evidence from modern conflict areas suggest that intergroup conflict and ostracism play a pivotal role in the evolution of cooperation. However, there is little direct evidence about the influence of intergroup conflict on human social behavior in the presence of endogenous group formation and unrestricted migration. This study introduces an experiment to examine the impact of intergroup conflict and ostracism on group formation, and human cooperation in a dynamic environment where group size, the occurrence of intergroup hostility and the threat of ostracism are endogenously determined. Here, we show that intergroup conflict may inhibit merging into single large human coalitions. The threat of ostracism is shown to increase the average group size and cooperation within the society. In addition, we find that competitive pressure between groups decreases the likelihood of social exclusion. Our results suggest that free migration between groups suppresses the impact of between-group competition on within-group cooperation. Moreover, our results stress the role of ostracism as a means to repress competition within groups and enhance group success in competition against other groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号