共查询到20条相似文献,搜索用时 0 毫秒
1.
Yifang Zhu Elinor Fanning Rong Chun Yu Qunfang Zhang John R. Froines 《Atmospheric environment (Oxford, England : 1994)》2011,45(36):6526-6533
Real time number concentrations and size distributions of ultrafine particles (UFPs, diameter <100 nm) and time integrated black carbon, PM2.5 mass, and chemical species were studied at the Los Angeles International Airport (LAX) and a background reference site. At LAX, data were collected at the blast fence (∼140 m from the takeoff position) and five downwind sites up to 600 m from the takeoff runway and upwind of the 405 freeway. Size distributions of UFPs collected at the blast fence site showed very high number concentrations, with the highest numbers found at a particle size of approximately 14 nm. The highest spikes in the time series profile of UFP number concentrations were correlated with individual aircraft takeoff. Measurements indicate a more than 100-fold difference in particle number concentrations between the highest spikes during takeoffs and the lowest concentrations when no takeoff is occurring. Total UFP counts exceeded 107 particles cm−3 during some monitored takeoffs. Time averaged concentrations of PM2.5 mass and two carbonyl compounds, formaldehyde and acrolein, were statistically elevated at the airport site relative to a background reference site. Peaks of 15 nm particles, associated with aircraft takeoffs, that occurred at the blast fence were matched with peaks observed 600 m downwind, with time lags of less than 1 min. The results of this study demonstrate that commercial aircraft at LAX emit large quantities of UFP at the lower end of currently measurable particle size ranges. The observed highly elevated UFP concentrations downwind of LAX associated with aircraft takeoff activities have significant exposure and possible health implications. 相似文献
2.
Liao KJ Amar P Tagaris E Russell AG 《Journal of the Air & Waste Management Association (1995)》2012,62(5):557-565
Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Implications: Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies. 相似文献
3.
Application of a scenario-based modeling system to evaluate the air quality impacts of future growth
Jülide Kahyaoğlu-Koračin Scott D. Bassett David A. Mouat Alan W. Gertler 《Atmospheric environment (Oxford, England : 1994)》2009,43(5):1021-1028
The structure and design of future urban development can have significant adverse effects on air pollutant emissions as well as other environmental factors. When considering the future impact of growth on mobile source emissions, we generally model the increase in vehicle kilometers traveled (VKT) as a function of population growth. However, diverse and poorly planned urban development (i.e., urban sprawl) can force higher rates of motor vehicle use and in return increase levels of pollutant emissions than alternative land-use scenarios. The objective of this study is to develop and implement an air quality assessment tool that takes into account the influence of alternative growth and development scenarios on air quality.The use of scenario-based techniques in land use planning has been around since the late 1940s and been tested in many different applications to aid in decision-making. In this study, we introduce the development of an advanced interactive scenario-based land use and atmospheric chemistry modeling system coupled with a GIS (Geographical Information System) framework. The modeling system is designed to be modular and includes land use/land cover information, transportation, meteorological, emissions, and photochemical modeling components. The methods and modularity of the developed system allow its application to both broad areas and applications.To investigate the impact of possible land use change and urbanization, we evaluated a set of alternative future patterns of land use developed for a study area in Southwest California. Four land use and two population variants (increases of 500k and 1M) were considered. Overall, a Regional Low-Density Future was seen to have the highest pollutant emissions, largest increase in VKT, and the greatest impact on air quality. On the other hand, a Three-Centers Future appeared to be the most beneficial alternative future land-use scenario in terms of air quality. For all cases, the increase in population was the main factor leading to the change on predicted pollutant levels. 相似文献
4.
Marc Carreras-Sospedra Robert Williams 《Journal of the Air & Waste Management Association (1995)》2016,66(2):134-150
It is estimated that there is sufficient in-state “technically” recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.Implications:?This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California. 相似文献
5.
The impacts of reactive terpene emissions from plants on air quality in Las Vegas,Nevada 总被引:1,自引:0,他引:1
Maria R. Papiez Mark J. Potosnak Wendy S. Goliff Alex B. Guenther Sou N. Matsunaga William R. Stockwell 《Atmospheric environment (Oxford, England : 1994)》2009,43(27):4109-4123
A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw?1 h?1 (Washingtonia spp., palms) for isoprene and 9.56 μgC gdw?1 h?1 (Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw?1 h?1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250–640 μgC m?2 h?1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NOx, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NOx; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality. 相似文献
6.
Fang Yang Ke Zhong Yonghang Chen Yanming Kang 《Environmental science and pollution research international》2017,24(30):23620-23635
Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons. 相似文献
7.
Cavalcanti PM La Rovere EL 《Journal of the Air & Waste Management Association (1995)》2011,61(4):377-389
Environmental impact assessments in Brazil have usually focused solely on project-related issues without considering the regional context. Although required by current environmental legislation, cumulative impact assessments have not been included in the overall environmental assessment of projects. However, in recent Strategic Environmental Assessment (SEA) studies of policies, plans, and programs undertaken on a voluntary basis in support of the decision-making process, this kind of assessment has been performed especially with respect to air quality. This paper presents the application of a methodology for the quantification of cumulative impacts on air quality under high uncertainty caused by various mining activities in a single region that is recommended for SEA studies. In this way, the methodology presented here is suitable for areas lacking detailed modeling information. The developed approach uses a relatively simplified mathematical model, lowering information gathering costs and requiring little processing time. The application of the methodology is illustrated in the case of a SEA of the Corumbá Mining and Industrial Complex Development Program. Despite the lack of data needed for a minimum characterization of conditions of the area surrounding the region modeled, the quantification of impact cumulativeness on air quality has played an important role in the context of the SEA. 相似文献
8.
Kathy S. Law Anke Roiger Jennie L. Thomas Louis Marelle Jean-Christophe Raut Stig Dalsøren Jan Fuglestvedt Paolo Tuccella Bernadett Weinzierl Hans Schlager 《Ambio》2017,46(3):453-463
Local emissions of Arctic air pollutants and their impacts on climate, ecosystems and health are poorly understood. Future increases due to Arctic warming or economic drivers may put additional pressures on the fragile Arctic environment already affected by mid-latitude air pollution. Aircraft data were collected, for the first time, downwind of shipping and petroleum extraction facilities in the European Arctic. Data analysis reveals discrepancies compared to commonly used emission inventories, highlighting missing emissions (e.g. drilling rigs) and the intermittent nature of certain emissions (e.g. flaring, shipping). Present-day shipping/petroleum extraction emissions already appear to be impacting pollutant (ozone, aerosols) levels along the Norwegian coast and are estimated to cool and warm the Arctic climate, respectively. Future increases in shipping may lead to short-term (long-term) warming (cooling) due to reduced sulphur (CO2) emissions, and be detrimental to regional air quality (ozone). Further quantification of local Arctic emission impacts is needed. 相似文献
9.
Evaluating the air quality impacts of the 2008 Beijing Olympic Games: On-road emission factors and black carbon profiles 总被引:3,自引:0,他引:3
Xing Wang Dane Westerdahl Lung Chi Chen Ye Wu Jiming Hao Xiaochuan Pan Xinbiao Guo K. Max Zhang 《Atmospheric environment (Oxford, England : 1994)》2009,43(30):4535-4543
The aggressive traffic interventions and emission control measures implemented to improve air quality during the 2008 Beijing Olympic Games created a valuable case study to evaluate the effectiveness of these measures on mitigating air pollution and protecting public health. In this paper, we report the results from our field campaign in summer 2008 on the on-road emission factors of carbon monoxide, black carbon (BC) and ultrafine particles (UFP) as well as the ambient BC concentrations. The fleet average emission factors for light-duty gasoline vehicles (LDGV) showed considerable reduction in the Olympic year (2008) compared to the pre-Olympic year (2007). Our measurement of Black Carbon (BC), a primary pollutant, at different elevations at the ambient site suggests consistent decrease in BC concentrations as the height increased near the ground level, which indicates that the nearby ground level sources, probably dominated by traffic, contributed to a large portion of BC concentrations in the lower atmospheric layer in Beijing during summertime. These observations indicate that people living in near ground levels experience higher exposures than those living in higher floors in Beijing. The BC diurnal patterns on days when traffic control were in place during the Olympic Games were compared to those on non-traffic-control days in both 2007 and in 2008. These patterns strongly suggest that diesel trucks are a major source of summertime BC in Beijing. The median BC concentration on Olympic days was 3.7 μg m−3, which was dramatically lower than the value on non-traffic-control days, indicating the effectiveness of traffic control regulations in BC reduction in Beijing. 相似文献
10.
Traffic and meteorological impacts on near-road air quality: summary of methods and trends from the Raleigh Near-Road Study 总被引:2,自引:0,他引:2
Baldauf R Thoma E Hays M Shores R Kinsey J Gullett B Kimbrough S Isakov V Long T Snow R Khlystov A Weinstein J Chen FL Seila R Olson D Gilmour I Cho SH Watkins N Rowley P Bang J 《Journal of the Air & Waste Management Association (1995)》2008,58(7):865-878
A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures. 相似文献
11.
12.
《Atmospheric environment (Oxford, England : 1994)》2007,41(30):6319-6321
13.
Murat Darçın 《Environmental science and pollution research international》2014,21(3):1954-1959
Air quality—or its converse, air pollution—is a significant risk factor for human health. Recent studies have reported association between air pollution and human health. There are numerous diseases that may be caused by air pollution such as respiratory infection, lung cancer, cardiovascular disease, chronic obstructive pulmonary disease, and asthma. In this study, the relationship between air quality and quality of life was examined by using canonical correlation analysis. Data of this study was collected from 27 countries. WHO statistics were used as the main source of quality of life data set (Y variables set). European Environment Agency statistics and (for outdoor air-PM10) WHO statistics were used as the main source of air quality data set (X variables set). It is found that there are significant positive correlation between air quality and quality of life. 相似文献
14.
Litao Wang Carey Jang Yang Zhang Kai Wang Qiang Zhang David Streets Joshua Fu Yu Lei Jeremy Schreifels Kebin He Jiming Hao Yun-Fat Lam Jerry Lin Nicholas Meskhidze Scott Voorhees Dale Evarts Sharon Phillips 《Atmospheric environment (Oxford, England : 1994)》2010,44(28):3449-3457
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb. 相似文献
15.
Thomas C. Curran William F. Hunt Jr. 《Journal of the Air & Waste Management Association (1995)》2013,63(7):711-714
San Diego Gas &; Electric has developed a quality assurance program for continuous emission monitors (CEM). Extractive, rather than in situ, monitors were selected as a result of an in-house evaluation program. Two extractive systems have been certified and a good operating and maintenance record has been established on these systems. A successful program requires the involvement and support of all affected personnel. It is desirable to have one or two key personnel coordinate the development of the program. It is also highly desirable to have good in-house source testing capabilities. 相似文献
16.
J. S. Gaffney N. A. Marley M. M. Cunningham P. V. Doskey 《Atmospheric environment (Oxford, England : 1994)》1999,33(30):10265
Peroxyacyl nitrates (PANs) were measured using gas chromatography with electron capture detection (GC/ECD) in north central Mexico City during February–March of 1997. Peroxyacetyl nitrate (PAN) was observed to exceed 30 ppb during five days of the study, with peroxypropionyl nitrate (PPN) and peroxybutryl nitrate (PBN) reaching 6 and 1 ppb maximum, respectively. Levels of total PANs typically exceeded 10 ppb during the period of measurement and showed a very strong diurnal variation with PANs maximum during the early afternoon and falling to less than 0.1 ppb during the evening hours. These levels of PANs are the highest reported values in North America (and the world) for an urban center, since levels of approximately 30 ppb were reported during the late 1970s in the Los Angeles area (South Coast Air Basin, Tuazon et al., 1978). Hydrocarbon measurements indicate that the levels of olefins, specifically butenes are significant in Mexico City. A time series taken of source indicator hydrocarbons taken before and during a Mexican National Holiday with reduced automobile traffic clearly show that mobile sources of butenes are as important as liquefied petroleum gas. Observations of 10–40 ppb C methyl-t-butyl ether (MTBE) are consistent with MTBE/gasoline fuel usage as a source of isobutene and formaldehyde. Both these reactive species can lead to increased oxidant and PAN formation. The strong diurnal profiles of PANs are consistent with regional clearing of the Mexico City air basin on a daily basis. Estimates are given using a simple box model calculation for a number of key primary and secondary pollutant emissions from this megacity on an annual basis. These calculations indicate that megacities can be important sources of both primary and secondary pollutants, and that PANs produced in megacity environments are likely to contribute strongly to regional scale ozone and aerosol productions during long range transport. 相似文献
17.
《Atmospheric environment (Oxford, England : 1994)》1999,33(28):4535-4564
During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are explored. This review also considers the phenomenon that has become known as Sick Building Syndrome (SBS), where the occupants of certain affected buildings repeatedly describe a complex range of vague and often subjective health complaints. These are often attributed to poor air quality. However, many cases of SBS provide a valuable insight into the problems faced by investigators attempting to establish causality. We know much less about the health risks from indoor air pollution than we do about those attributable to the contamination of outdoor air. This imbalance must be redressed by the provision of adequate funding, and the development of a strong commitment to action within both the public and private sectors. It is clear that meeting the challenges and resolving the uncertainties associated with air quality problems in the indoor environment will be a considerable undertaking. 相似文献
18.
19.
Air quality impacts of power plant emissions in Beijing 总被引:8,自引:0,他引:8
The CALMET/CALPUFF modeling system was applied to estimate the air quality impacts of power plants in 2000 and 2008 in Beijing, and the intake fractions (IF) were calculated to see the public health risks posed. Results show that in 2000 the high emission contribution induced a relatively small contribution to average ambient concentration and a significant impact on the urban area (9.52 microg/m(3) of SO(2) and 5.29 microg/m(3) of NO(x)). The IF of SO(2), NO(x) and PM(10) are 7.4 x 10(-6), 7.4 x 10(-6) and 8.7 x 10(-5), respectively. Control measures such as fuel substitution, flue gas desulfurization, dust control improvement and flue gas denitration planned before 2008 will greatly mitigate the SO(2) and PM(10) pollution, especially alleviating the pressure on the urban area to reach the National Ambient Air Quality Standard (NAAQS). NO(x) pollution will be mitigated with 34% decrease in concentration but further controls are still needed. 相似文献
20.
M.A. Parra J.L. Santiago F. Martín A. Martilli J.M. Santamaría 《Atmospheric environment (Oxford, England : 1994)》2010,44(17):2089-2097
The representativeness of point measurements in urban areas is limited due to the strong heterogeneity of the atmospheric flows in cities. To get information on air quality in the gaps between measurement points, and have a 3D field of pollutant concentration, Computational Fluid Dynamic (CFD) models can be used. However, unsteady simulations during time periods of the order of months, often required for regulatory purposes, are not possible for computational reasons. The main objective of this study is to develop a methodology to evaluate the air quality in a real urban area during large time periods by means of steady CFD simulations. One steady simulation for each inlet wind direction was performed and factors like the number of cars inside each street, the length of streets and the wind speed and direction were taken into account to compute the pollutant concentration. This approach is only valid in winter time when the pollutant concentrations are less affected by atmospheric chemistry. A model based on the steady-state Reynolds-Averaged Navier–Stokes equations (RANS) and standard k-? turbulence model was used to simulate a set of 16 different inlet wind directions over a real urban area (downtown Pamplona, Spain). The temporal series of NOx and PM10 and the spatial differences in pollutant concentration of NO2 and BTEX obtained were in agreement with experimental data. Inside urban canopy, an important influence of urban boundary layer dynamics on the pollutant concentration patterns was observed. Large concentration differences between different zones of the same square were found. This showed that concentration levels measured by an automatic monitoring station depend on its location in the street or square, and a modelling methodology like this is useful to complement the experimental information. On the other hand, this methodology can also be applied to evaluate abatement strategies by redistributing traffic emissions. 相似文献