首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
G. Döhler 《Marine Biology》1984,83(3):247-253
The marine diatoms Lauderia annulata Cleve and Thalassiosira rotula Meunier were grown at different salinities (20, 35 and 45) and exposed to different levels of midultraviolet, UV-B) 439, 717 and 1230 J m-2 d-1, weighted) for 2 d. A low UV-B dose (439 J m-2 d-1) usually caused a slight increase in biomass production (dry weight) compared to non-UV-B irradiated cells. Enhanced UV-B radiation (717 J m-2 d-1) depressed protein and pigment content (chlorophyll a, chlorophyll c 1+c2 and carotenoids), especially in algae grown at 20 or 35 salt concentration of the nutrient solution. The effect of UV-B radiation (717 J m-2 d-1) on the pattern and concentration of amino acids was species-dependent. Aspartic acid was reduced in all tested diatoms. A drastic increase in glutamine and a reduction in glutamic acid pools could be observed in L. annulata samples, but no significant variation of the impact of UV-B was found in dependence on the salt concentration of the nutrient medium. T. rotula cells grown at 35 S showed an increase of glutamic acid and a decrease of glutamine levels after UV-B radiation. The results are discussed in relation to the impact of UV-B upon carbon and nitrogen metabolism.  相似文献   

2.
Growth experiments in batch cultures indicated that the uptake of nitrate by the marine pseudomonad PL1 was inhibited in the presence of ammonia provided that the ammonia concentration was higher than 1 mM. At ammonia concentrations of less than about 1 mM, however, both nitrate and ammonia were utilised simultaneously. The saturation constants for nitrate and ammonia uptake were both 2.6x10-4 M, and similar to the Michaelis constants of nitrate reductase for nitrate (2.9x10-4 M) and glutamine synthetase for ammonia (2x10-4 M). Nitrate reductase activity linked to NADH was detected in chemostat-grown cultures with nitrate as nitrogen source, and in cultures containing limiting concentrations of nitrate and ammonia, ammonia or glutamate. Enzyme synthesis appeared to be repressed in cultures containing an excess of ammonia or glutamate. Chemostat cultures utilised ammonia or glutamate in preference to nitrate, while there was no marked preference between ammonia and glutamate.  相似文献   

3.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

4.
We examined the impact of exposing natural populations of marine bacteria (from seawater collected near Woods Hole, Massachusetts, USA) to multiple nitrogen and carbon sources in a series of batch growth experiments conducted from 1989 through 1990. The substrate C:N ratio (C:Ns) was varied from 1.5:1 to 10:1 either with equal amounts of NH 4 + and different amino acids or an amino acid mixture, all supplemented with glucose to maintain the C:Ns ratio equal to that of the respective amino acid, or with combinations of glucose and NH 4 + alone. A common feature of the experiments involving amino acids was the concurrent uptake of NH 4 + and amino acids that persisted as long as a readily assimilable carbon source (glucose in our case) was taken up. There was no net regeneration of NH 4 + , even though catabolism of amino acids occurred. Regeneration of NH 4 + was evident only after glucose was completely utilized, which usually occurred at the end of exponential growth. The contribution of15NH 4 + to total nitrogen uptake by the end of exponential growth varied from ~60 to 80% when individual amino acids were present and down to ~24% when the amino acid mixture was added. These estimates are conservative because we did not account for possible isotope dilution effects resulting from amino acid catabolism. When NH 4 + and glucose were the sole nitrogen and carbon sources, there was a stoichiometric balance between glucose and NH 4 + uptake over a wide range of C:Ns ratios, leading to a constant bacterial biomass C:N ratio (C:NB) of ~4.5:1. As a result NH 4 + usage varied from 50% when the C:Ns ratio was 3.6:1, to 100% when the C:Ns ratio was 10:1. Gross growth efficiency varied from ~60% when NH 4 + plus glucose were added alone or with the amino acid mixture, to 47% when the individual amino acids were used in place of the mixture. It is thus evident that actively growing bacteria will act as sinks for nitrogen when a carbon source that can be assimilated easily is available to balance NH 4 + uptake, even when amino acids are available and are being co-metabolized.  相似文献   

5.
There is a relationship between host feeding, nitrogen status and mitotic activity of zooxanthellae symbiotic with the marine hydroid Myrionema amboinense. Decreases in the mitotic index of zooxanthellae in starved M. amboinense, and in internal pool sizes of glutamine and glutamate, amino acids involved in ammonium assimilation via the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway, were partially restored by addition of ammonium chloride to seawater in which hydroids were incubated. Levels of glutamine were more sensitive to host starvation than levels of glutamate, resulting in a decrease in the glutamine: glutamate molar ratio to that found in zooxanthellae cultured on nitrate. Hydroids starved for 5 d and then incubated in different concentrations of ammonium chloride showed a positive correlation between ammonium concentration and mitotic index of their symbiotic zooxanthellae. Host starvation caused a decrease in perturbation of levels of glutamine and glutamate during ammonium assimilation, as well as decreases in rates of assimilation of [14C]-leucine into TCA-insoluble protein, and in photosynthetic incorporation of [14C]-bicarbonate. These observations suggest that host starvation reduces nitrogen supply to the zooxanthellae, causing nitrogen stress to the symbionts and reduction in metabolic processes associated with nitrogen assimilation and photosynthesis as well as with cell division.  相似文献   

6.
A nitrogen-deficient batch culture of the marine diatom Skeletonema costatum, when resupplied with a mixture of nitrate and ammonium, showed an initial enhanced nitrate uptake rate leading to a large internal concentration (pool) of nitrate. Following this initial nitrate uptake event, nitrate uptake ceased, and nitrate assimilation was inhibited until the ammonium present was used. At this point, nitrate uptake resumed and nitrate assimilation began. No internal ammonium pool was observed during nitrate utilization, but a large nitrate pool remained throughout the utilization of external nitrate. The internal nitrate pool decreased rapidly after exhaustion of nitrate from the culture medium, but growth of cellular particulate nitrogen continued for about 24 h. A mathematical simulation model was developed from these data. The model cell consisted of a nitrate pool, ammonium pool, dissolved organic nitrogen pool, and particulate nitrogen. It was found that simple Michaelis-Menten functions for uptake and assimilation gave inadequate fit to the data. Michaelis-Menten functions were modified by inclusion of inhibitory and stimulatory feedback from the internal pools to more accurately represent the observed nutrient utilization.  相似文献   

7.
Small or negligible differences in growth rates, average cell size, yields in cell numbers and total cell volumes were found in cultures of Thalassiosira fluviatilis inriched with nitrate, ammonium, or urea. Intracellular pools of unassimilated nitrate, nitrate, and ammonium were found in nutrient-rich conditions, but urea was not accumlated internally. Nitrogen assimilation into organic combination rather than nitrogen nutrient uptake was a critical rate-limiting step in nitrogen utilization. The free amino acid pool, protein, lipid-associated nitrogen, pigments, and total cell nitrogen were all highest in young or mature phase cells and decreased with age in senescent cells, whereas chitan, lipid, carbohydrate, and total cellular carbon all continued to increase during senescence. Dissolved organic nitrogen compounds accumulated in the medium only during senescence. C:N and lipid:protein were sensitive indicators of nitrogen depletion and age in T. fluviatilis.  相似文献   

8.
The major inorganic and organic osmolytes responsible for hydrating the oocytes during pre-ovulatory meiotic maturation in autumn- and spring-spawning stocks of Atlantic herring are examined. Despite the ovulated eggs of spring-spawning herring being 1.6- to 2-fold larger than the autumn-spawning stock, the GSI (27 ± 3%) and degree of oocyte hydration (70–72% water) were similar. Normalising the data with respect to dry mass revealed that the physiological mechanisms underlying the maturational influx of water were the same for both classes of egg. Cl, K+ and Pi together with a small pool of free amino acids (FAA) represented the driving forces for oocyte hydration. K+ (autumn and spring) and Pi (spring) maintained their concentrations in the ovulated eggs, while all other ions, including Cl, Na+, NH4 + and Mg2+ were significantly diluted. In contrast the FAA concentration increased during the hydration process. Amongst the inorganic ions, Cl showed the greatest increase in the ovulated eggs. The FAA content doubled from 1.5 to 3.3% of dry mass during oocyte hydration and accounted for 29% of the calculated ovoplasmic osmolality in the ovulated eggs from both autumn- and spring-spawners. This significant osmotic effect of the small pool of FAA was due to the low water content of the benthic eggs. The differential movement of the inorganic and organic osmolytes that underly oocyte hydration in Atlantic herring are discussed in relation to current models of transmembrane ion flux.  相似文献   

9.
Chlorella autotrophica Shihira and Krauss (clone 580), a euryhaline microalga from the marine coastal environment is subject to large fluctuations in external salinity and nitrogen supply. The alga exhibits maximum growth at salinities lower than 100% ASW (artificial seawater). Cells divide faster and show higher cell yields when the supply of either NH 4 + or NO 3 - is increased above 0.2 mM. Cells growing on NH 4 + show high levels of NADPH-glutamate dehydrogenase (GDH) activity, and the levels of glutamine synthetase (GS) are decreased to very low levels under these conditions. Methionine sulfoximine (MSX), an inhibitor of GS, has little effect on cell division and nitrogen assimilation of cells growing on NH 4 + . Cells growing on NO 3 - , however, show marked inhibition (65%) in nitrogen assimilation in the presence of 5 mM MSX. This MSX concentration also causes growth retardation and a progressive decrease in cell protein and nitrogen content. GS is almost completely inhibited by 5 mM MSX in both NH 4 + and NO 3 - -grown cells. Cells growing on NH 4 + maintain high levels of NADPH-GDH activity in the presence of MSX. NADPH-GDH activity in MSX-treated NO 3 - -grown cells increases, and, in the presence of 5 mM MSX, reaches 40% of the level found in NH 4 + -grown cells. These results are consistent with NADPH-GDH providing an alternate pathway for NH 4 + assimilation by this marine Chlorella species.  相似文献   

10.
The release of dissolved free amino acids in axenic batch cultures of the diatom Chaetoceros debile during different growth phases was studied during the late summer of 1982. Variations due to ASP, HIS, ALA, SER, THR, PHE+NH4, LEU and ORN were observed. The proportions of each amino acid differed according to growth phase. Maximum release and accumulation in the medium, corresponding to a rise ranging from 10-8 to 10-6 M, occurred at the transition between the exponential and stationary phases, and coincided with a shift in the intracellular protein and carbohydrate concentrations, and in the chlorophyll: phaeophytin ratio. It is suggested that zooplankton grazers can benefit from the accumulation of phytoplankton standing stock and nutritious compounds at times when the concentration of extracellular amino acids is high enough to trigger chemosensory detection of algal food; i.e., at the end of the exponential growth phase.  相似文献   

11.
As an initial step in our study of nitrogen metabolism in the coral/algal symbiosis we have purified glutamate dehydrogenase (EC 1.4.1.4) to homogeneity from polyp tissue of the staghorn coral Acropora formosa collected from Magnetic Island (North Queensland) in 1985–1986. The purified enzyme had a specific activity of 78 U mg-1. The native enzyme had a relative molecular weight, M r, of 360 000 (±20 000), and appears to be a hexamer with subunits of M r=56000 (±3 000). Like the enzyme from other coelenterates, the coral glutamate dehydrogenase (GDH) was absolutely specific with respect to the coenzyme substrate (NADP+/NADPH), and was insensitive to allosteric regulation by nucleotides; unlike other coelenterate GDHs, the coral enzyme was absorlutely specific for ammonium as amino group donor in the reductive amination reaction, and major differences in kinetic properties were apparent. Linear Michaelis-Menten kinetics were observed for the substrates a-ketoglutarate, NADPH and NADP+, the K m values being 0.93, 0.11 and 0.03 mM, respectively. However glutamate dehydrogenase displayed biphasic kinetics with respect to l-glutamate and ammonium, indicating two apparent K m values (18 and 81 mM for l-glutamate and 9.2 and 416 mM for ammonium). The enzyme also exhibits Scatchard plots, Hill coefficients and cooperativity indices characteristic of enzymes displaying negative cooperativity.  相似文献   

12.
The nutritional pattern for heterotrophic growth of Nitzschia angularis var. affinis (Grun.) Perag. is more complex than for other diatom species studied previously. This species grew slowly in the dark in the presence of single amino acids, either glutamate or alanine; other amino acids when supplied singly were not used as substrates. Carbon from glutamate was converted to cell carbon with an efficiency of 43%. Glutamine was inhibitory both in the light and in the dark, and aspartate inhibited heterotrophic growth on glutamate. Glucose and tryptone supplied singly did not support heterotrophic growth, but when combined, together they allowed for rapid growth of N. angularis (generation time of 16 h). Glucose in combination with glutamate, alanine, aspartate, or asparagine (but not with any other amino acids) also supported growth in the dark, at a rate considerably more rapid than with glutamate alone. In the presence of excess glucose and limiting concentrations of glutamate, approximately 50% of the cell carbon for heterotrophic growth came from glucose, while in combination with tryptone about 25% of the cell carbon came from glucose. Amino acids were taken up by cells grown either photoautrophically or in the dark in the presence or absence of organic substrates; uptake rates were some-what higher for dark-grown than for light-grown cells. Glucose was taken up only by dark-grown cells; induction of a glucose uptake system in the dark required the presence of glutamate but not of glucose. The rates of uptake of glutamate and glucose by cells incubated in the dark with glutamate were sufficiently high to account for the observed rates of growth on these substrates in the dark. The uptake systems of N. angularis have relatively high affinities for glucose (K s =0.03 mM) and glutamate (K s =0.02 mM).Contribution No. 890 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

13.
Freshly harvested cells of Phaeodactylum tricornutum Bohlin grown with nitrate, ammonium or lysine as a sole nitrogen source had a low ability to take up lysine or arginine, but this ability increased when cells were deprived, over 48 h, of either nitrogen or carbon. The effects of nitrogen and carbon deprivation were additive, and the uptake ability was greatest in cells incubated in darkness in nitrogen-free medium. Uptake ability increased in cells illuminated in the presence of 10-5 M 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) an inhibitor of photosynthetic electron transport. An inverse relationship between rate of development of the uptake system and rate of photosynthesis was also established. Development of the uptake system was prevented by cycloheximide or by anaerobiosis. Following transfer to a normal nitrate medium, illuminated cells lost the lysineuptake system by dilution as the cells grew. There was a linear and positive correlation between the initial rate of uptake of lysine and the maximum concentration which was maintained in the cells when equilibrium was reached, indicating that transinhibition of lysine uptake may occur and that the extent of this inhibition is related to the size of the internal amino acid pool. The relevance of the findings to the growth of phytoplankton in natural waters is discussed.  相似文献   

14.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   

15.
In recent studies, we developed a combined nutrient removal-marine aquaculture process for the tertiary treatment of wastewater and the production of commercially important shellfish. Part of this process consists of an outdoor mass cultivation system for marine algae. During our previous experiments we observed that marine diatoms almost exclusively are the dominant algal species in our outdoor cultures. To better understand this phenomenon of diatom dominance we grew 16 species of marine algae in continuous monoculture under laboratory conditions simulating to some degree the conditions prevailing in our outdoor experiments. Species such as Skeletonema costatum, Monochrysis lutheri and Tetraselmis sp., which were never dominant in our outdoor cultures, grew as well in monoculture, as Phaeodactylum tricornutum, frequently, the prevalent species outdoors. However, when monocultures of Dunaliella tertiolecta and Thalassiosira pseudonana (3H) were purposely contaminated with P. tricornutum, the latter species quickly became dominant. It is suggested that a complex interaction of environmental factors is usually responsible for the dominance of a particular species; one such factor may be the nitrogen source in the growth media. Under conditions of virtually, complete nitrogen assimilation, the carbon: nitrogen ratio in the algae was high (7 to 8) when NO 3 - –N was the source of nitrogen, and low (4 to 6) when NH 4 + –N was the prime form of nitrogen. When algal growth was low, resulting in a large inorganic nitrogen residue, the carbon:nitrogen ratio was low regardless of whether NO 3 - –N or NH 4 + –N was the main nitrogen source.Contribution No. 3297 from the Woods Hole Oceanographic Institution.  相似文献   

16.
Concentrations of fluorescamine-positive substances (primary amines) and turnover rates of L-leucine pools were measured concurrently in seawater samples taken from 1300 m3 plastic enclosures moored in Saanich Inlet, British Columbia, Canada. Concentration and turnover rates of dissolved free amino acids were calculated and then used to determine the instantaneous flux of dissolved free amino acids, which ranged from 0.09 to 2.42 M d-1 (i.e.,5 to 145 gC l-1 d-1). This flux was highest in the euphotic zone, and was related to net primary production but not to the type of dominant primary producer. Comparison of the flux to changes in the concentration of ammonia in deep water suggested that amino acid degradation accounted for 60% of the flux into the ammonia pool. For a given sample, the amino acid carbon flux ranged from 17 to 210% (mean=78%) of the primary production. Such fluxes of amino acid carbon, if used exclusively by the bacterioplankton, would give growth rates ranging from 0.3 to 3.0 (mean=1.7) bacterial doublings d-1. These calculations indicate that a large fraction of the community carbon and nitrogen flux passes through the bacterioplankton.  相似文献   

17.
The properties of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from gill tissue of the tanner crab Chionocetes bairdi, and lactate dehydrogenase (LDH) and glyceraldehyde dehydrogenase from skeletal muscle of C. bairdi and the yellowfin sole Limanda aspera were examined over the physiological temperature range of the animals. Both animals were obtained in the Bering Sea in winter, and their enzymes appear to be remarkably cold-adapted. Affinity of sole LDH for substrate appears to increase with decreasing temperature, thus keeping reaction rate essentially independent of temperature at physiological concentrations of the substrate. Calculated values of activation energy are low, in keeping with the argument that organisms from cold environments have enzymes with a reduced energy of activation. In addition, Hill plots of the substrate saturation curves for lactate dehydrogenase from muscle of sole indicate that there is a facilitation of allosteric behaviour at low temperatures. Maximum affinity of sole LDH for substrate in the absence of univalent cations occurs at 3°C, while in the presence of 150 mN K+, it occurs between 0° to-2°C. The effects of Mg2+ on enzyme activity appear to be determined by concentration of substrate and temperature. Thus, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase are stimulated more effectively by Mg2+ at low temperature and at low substrate levels whereas, at high concentrations of substrate, they are relatively independent of the bivalent cation. All four dehydrogenases are affected by the univalent cations Na+, K+ and NH4 + in a manner which appears to be determined, in part at least, by concentration of substrate and by temperature. These findings suggest mechanisms for the maintenance and regulation of enzyme activity in poikilothermic tissues at low and changing temperatures.  相似文献   

18.
19.
In 1987 effects of salinity fluctuations on growth of Ditylum brightwellii (West) Grunow, isolated from the Eastern Scheldt estuary (SW Netherlands) in 1981, were studied. D. brightwellii was grown in a 12 h light: dark cycle at constant salinity in brackish media. Ammonium-limited cultures were subjected to a salinity fluctuation. By decreasing the salinity to 4.8 photosynthesis and cell division were inhibited; cells were deformed. Protein and carbohydrate contents increased slightly, dark respiration was stimulated and cellular levels of glucose decreased at low salinity; this indicated a possible role of sugars in osmoregulation. Ammonium was accumulated in cultures, amino acids may have been stored; the role of the vacuole as a storage compartment was discussed. Both the ammonium uptake capacity and the affinity for ammonium decreased. Nitrogen limitation was relieved in the transient state. [With the activity of the nitrogen assimilation enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) being uninhibited by lower salinity.] Recovery from hypo-osmotic stress during a salinity increase was initiated by stimulated photosynthesis; chlorophyll a increased, but persistant contractions of cytoplasm (with chloroplasts) may have delayed cell growth. The glutamate dehydrogenase (GDH) activity decreased further whereas the cellular level of alanine increased in the presence of large ammonium pools; this may indicate a temporary activity of ADH (alanine dehydrogenase). Skeletonema costatum (Greville) Cleve, recovered faster from hypoosmotic stress than did D. brightwellii. Due to an osmotic shock from 13.6 to 7.1 S both species excreted amino acids and glucose; S. costatum accumulated more glucose, D. brightwellii accumulated more amino acids. S. costatum may with the competition for nitrogen in waters with an unstable salinity; it will replace D. brightwellii.Contribution no. 427 Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

20.
Glycolate excreted by phytoplankton is a potentially important nutrient for bacteria in coastal and estuarine environments. The metabolism of glycolate by Pseudomonas sp., strain S227, originally isolated from the New York Bight Apex, has been studied. The specific growth rate for this strain on glycolate is 0.156 doublings h-1. The apparent Vmax and Km for glycolate uptake are 83.6 nmol min-1 mg cell protein-1 and 7.4x10-8 M, respectively. The preferential respiration of the carboxyl carbon (C-1) and the incroporation of the hydroxymethyl carbon (C-2) suggest that the glycerate pathway is used for growth on glycolate. Alternatively, another pathway can be utilized which results in the complete catabolism of glycolate. Glycolate and lactate metabolism are also closely linked either by a common metabolic pathway or a common transport system other than the monocarboxylate transport system. The magnesium ion concentration is also important in glycolate metabolism. The characteristics of glycolate metabolism observed in Pseudomonas sp., strain S227, are advantageous in coastal and estuarine environments where glycolate production is intermittent, and the concentrations are low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号