首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Earlier measurements of stream channel geometry on 19 reaches were repeated to provide a longitudinal study of stream channel adjustment over 13 years (1987‐2000) in the urbanizing Gwynns Falls, Maryland watershed. We observed both enlargement and reduction in channel size, depending on the extent of upstream development, the timing and location of urbanization and upstream channel adjustment, and the presence of hydrologic constrictions and grade controls. Based on a relatively simple visual assessment of the composition, size, and extent of instream sediment storage, we categorized stream reaches into three phases: aggraded (7 sites), early erosion (7 sites), and late erosion (5 sites). Aggraded sites had point and lateral bars mantled with fine‐grained sediment and experienced some reduction in cross‐sectional area, primarily through the deposition of fine‐grained material on bars in the channel margins. Early erosion sites had smaller bars and increases in channel cross‐sectional area as a consequence of the evacuation of in‐channel fine‐grained sediment. Fine‐grained sediments were either entirely absent or found only at a few high bar elevations at late erosion sites. Sediment evacuation from late erosion sites has both enlarged and simplified channels, as demonstrated by an increase in cross‐sectional area and a strong decrease in channel width variation. Channel cross‐sectional area enlargement, reduced channel width variation, and channel incision were ubiquitous at erosion sites. As a result, overbank flows were less common in the erosion sites as determined by high water marks left by a 2‐year flood that occurred during the study period. Principal causes for channel changes appear to be increased high flow durations and reduced sediment supply. Spatial variation in channel conditions could not be tied simply to sub‐basin impervious cover or watershed area. In‐channel sediment storage is a useful indicator of channel form and adjustment. When combined with information on development and sedimentation conditions in the contributing drainage, instream sediment storage can be used to effectively assess future channel adjustments.  相似文献   

2.
Abstract: In efforts to control the degradation of water quality in Lake Tahoe, public agencies have monitored surface water discharge and concentrations of nitrogen, phosphorus, and suspended sediment in two separate sampling programs. The first program focuses on 20 watersheds varying in size from 162 to 14,000 ha, with continuous stream gaging and periodic sampling; the second focuses on small urbanized catchments, with automated sampling during runoff events. Using data from both programs, we addressed the questions (1) what are the fluxes and concentrations of nitrogen and phosphorus entering the lake from surface runoff; (2) how do the fluxes and concentrations vary in space and time; and (3) how are they related to land use and watershed characteristics? To answer these questions, we calculated discharge‐weighted average concentrations and annual fluxes and used multiple regression to relate those variable to a suite of GIS‐derived explanatory variables. The final selected regression models explain 47‐62% of the variance in constituent concentrations in the stormwater monitoring catchments, and 45‐72% of the variance in mean annual yields in the larger watersheds. The results emphasize the importance of impervious surface and residential density as factors in water quality degradation, and well‐developed soil as a factor in water quality maintenance.  相似文献   

3.
Abstract: Siltation and subsequent biological impairment is a national problem prompting state regulatory agencies to develop sediment total maximum daily loads (TMDL) for many streams. To support TMDL targets for reduced sediment yield in disturbed watersheds, a critical need exists for stream assessments to identify threshold concentrations of suspended sediment that impact aquatic biota. Because of the episodic nature of stream sediment transport, thresholds should not only be a function of sediment concentration, but also of duration and dose frequency. Water quality sondes can collect voluminous amounts of turbidity data, a surrogate for suspended sediment, at intervals that can be used to characterize concentration, duration, and frequency of elevated turbidity events. To characterize turbidity sonde data in an ecologically relevant manner, a methodology for concentration‐duration‐frequency (CDF) curves was developed using turbidity doses that relate to different levels of biological impairment. To illustrate this methodology, turbidity CDF curves were generated for two sites on Little Pigeon River in the Great Smoky Mountains National Park, Tennessee, using over 30,000 sonde data measurements per site for a one‐year period. Utilizing a Poisson arrival approach, turbidity spikes were analyzed stochastically by observing the frequency and duration of recorded events over a turbidity level that relates to a biological dose response. An exponential equation was used to fit duration and frequency of a specified turbidity level to generate concentric‐shaped CDF curves, where at specific turbidities longer durations occurred less frequently and conversely shorter durations occurred more frequently. The significance of the equation fit to the data was accomplished with a Kolmogorov‐Smirnov goodness‐of‐fit test. Our findings showed that the CDF curves derived by an exponential function performed reasonable well, with most curves significant at a 95% confidence level. These CDF curves were then used to demonstrate how they could be used to assess biological impairment, and identify future research needs for improved development of sediment TMDLs.  相似文献   

4.
Robertson, Dale M. and David A. Saad, 2011. Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models. Journal of the American Water Resources Association (JAWRA) 47(5):1011‐1033. DOI: 10.1111/j.1752‐1688.2011.00574.x Abstract: Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ~33‐44% of the P and ~33‐58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ~14‐44% of the P and 13‐34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio.  相似文献   

5.
Schwarz, Gregory E., Richard B. Alexander, Richard A. Smith, and Stephen D. Preston, 2011. The Regionalization of National‐Scale SPARROW Models for Stream Nutrients. Journal of the American Water Resources Association (JAWRA) 47(5):1151‐1172. DOI: 10.1111/j.1752‐1688.2011.00581.x Abstract: This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national‐scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national‐scale and regional‐scale information to estimate a hybrid model that imposes cross‐region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ±100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models.  相似文献   

6.
Cho, Jaepil, Richard R. Lowrance, David D. Bosch, Timothy C. Strickland, Younggu Her, and George Vellidis, 2010. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):586-602. DOI: 10.1111/j.1752-1688.2010.00436.x Abstract: The Soil and Water Assessment Tool (SWAT) does not fully simulate riparian buffers, but has a simple filter function that is responsive to filter strip width (FILTERW). The objectives of this study were to (1) evaluate SWAT hydrology and water quality response to changes in watershed subdivision levels and different FILTERW configurations and (2) provide guidance for selecting appropriate watershed subdivision for model runs that include the riparian buffer feature through the FILTERW parameter. Watershed subdivision level is controlled by the critical source area (CSA) which defines the minimum drainage area required to form the origin of a stream. SWAT was calibrated on a 15.7 km2 subdrainage within the Little River Experimental Watershed, Georgia. The calibrated parameter set was applied to 32 watershed configurations consisting of four FILTERW representations for each of eight CSA levels. Streamflow predictions were stable regardless of watershed subdivision and FILTERW configuration. Predicted sediment and nutrient loads from upland areas decreased as CSA increased when spatial variations of riparian buffers are considered. Sediment and nutrient yield at the watershed outlet was responsive to different combinations of CSA and FILTERW depending on selected in-stream processes. CSA ranges which provide stable sediment and nutrient yields at the watershed outlet was suggested for avoiding significant modifications in selected parameter set.  相似文献   

7.
Dosskey, Michael G., Philippe Vidon, Noel P. Gurwick, Craig J. Allan, Tim P. Duval, and Richard Lowrance, 2010. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams. Journal of the American Water Resources Association (JAWRA) 46(2):261-277. DOI: 10.1111/j.1752-1688.2010.00419.x Abstract: We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality. Our emphasis is on the role that riparian vegetation plays in protecting streams from nonpoint source pollutants and in improving the quality of degraded stream water. Riparian vegetation influences stream water chemistry through diverse processes including direct chemical uptake and indirect influences such as by supply of organic matter to soils and channels, modification of water movement, and stabilization of soil. Some processes are more strongly expressed under certain site conditions, such as denitrification where groundwater is shallow, and by certain kinds of vegetation, such as channel stabilization by large wood and nutrient uptake by faster-growing species. Whether stream chemistry can be managed effectively through deliberate selection and management of vegetation type, however, remains uncertain because few studies have been conducted on broad suites of processes that may include compensating or reinforcing interactions. Scant research has focused directly on the response of stream water chemistry to the loss of riparian vegetation or its restoration. Our analysis suggests that the level and time frame of a response to restoration depends strongly on the degree and time frame of vegetation loss. Legacy effects of past vegetation can continue to influence water quality for many years or decades and control the potential level and timing of water quality improvement after vegetation is restored. Through the collective action of many processes, vegetation exerts substantial influence over the well-documented effect that riparian zones have on stream water quality. However, the degree to which stream water quality can be managed through the management of riparian vegetation remains to be clarified. An understanding of the underlying processes is important for effectively using vegetation condition as an indicator of water quality protection and for accurately gauging prospects for water quality improvement through restoration of permanent vegetation.  相似文献   

8.
Abstract: To evaluate anthropogenic sedimentation in United States (U.S.) Pacific Northwest coastal streams, we applied an index of relative bed stability (LRBS*) to summer low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program field methods in a probability sample of 101 wadeable stream reaches. LRBS* is the log of the ratio of bed surface geometric mean particle diameter (Dgm) to critical diameter (D*cbf) at bankfull flow, based on a modified Shield’s criterion for incipient motion. We used a formulation of LRBS* that explicitly accounts for reductions in bed shear stress that result from channel form roughness due to pools and wood. LRBS* ranged from ?1.9 to +0.5 in streams within the lower quartile of human riparian and basin disturbance, and was substantially lower (?4.2 to ?1.1) in streams within the upper quartile of human disturbance. Modeling results suggest that the expected range of LRBS* in streams without human disturbances in this region might be generally between ?0.7 and +0.5 in either sedimentary or volcanic lithology. However, streams draining relatively soft, erodible sedimentary lithology showed greater reductions in LRBS* associated with disturbance than did those having harder, more resistant volcanic (basalt) lithology with similar levels of basin and riparian disturbance. At any given level of disturbance, smaller streams had lower LRBS* than those with larger drainages. In sedimentary lithology (sandstone and siltstone), high‐gradient streams had higher LRBS* than did low‐gradient streams of the same size and level of human disturbance. High gradient streams in volcanic lithology, in contrast, had lower LRBS* than low‐gradient streams of similar size and disturbance. Correlations between Dgm and land disturbance were stronger than those observed between D*cbf and land disturbance. This pattern suggests that land use has augmented sediment supplies and increased streambed fine sediments in the most disturbed streams. However, we also show evidence that some of the apparent reductions in LRBS*, particularly in steep streams draining small volcanic drainages, may have resulted in part from anthropogenic increases in bed shear stress. The synoptic survey methods and designs we use appear adequate to evaluate regional patterns in bed stability and sedimentation and their general relationship to human disturbances. More precise field measurements of channel slope, cross‐section geometry, and bed surface particle size would be required to use LRBS* in applications requiring a higher degree of accuracy and precision, such as site‐specific assessments at individual streams.  相似文献   

9.
Abstract: This study evaluated biological integrity expectations of fish assemblages in wadeable streams for the Alabama portion of the Choctawhatchee River watershed using a multimetric approach. Thirty‐four randomly selected stream sites were sampled in late spring 2001 to calibrate an index of biotic integrity (IBI). Validation data were collected during the spring 2001, and summer and fall of 2003 from disturbed and least‐impacted targeted sites (n = 20). Thirty‐five candidate metrics were evaluated for their responsiveness to environmental degradation. Twelve metrics were selected to evaluate wadeable streams and four replacement metrics were selected for headwater streams. Scores that ranged from 58 to 60 were considered to be representative of excellent biotic integrity (none found in this study), scores of 48‐52 as good integrity (31% of the sites in this study), 40‐44 as fair (43%), 28‐34 as poor (21%), and 12‐22 as very poor (5%). Of the four stream condition categories (urban, cattle, row crop, and least impacted), the IBI scores for urban and cattle sites differed significantly from least‐impacted sites. Row crop sites, although not significantly different from least‐impacted, tended to have greater variability than the other categories. Lower IBI scores at both urban and cattle sites suggest that the IBI accurately reflects stream impairment in the Choctawhatchee River drainage.  相似文献   

10.
We present conceptual and quantitative models that predict changes in fertilizer‐derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer‐derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi‐Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.  相似文献   

11.
Turton, Donald J., Michael D. Smolen, and Elaine Stebler, 2009. Effectiveness of BMPs in Reducing Sediment From Unpaved Roads in the Stillwater Creek, Oklahoma Watershed. Journal of the American Water Resources Association (JAWRA) 45(6):1343‐1351. Abstract: Erosion from rural unpaved roads is thought to be an important source of sediment in sediment‐impaired streams in Oklahoma and other locations. However, no direct measurements of sediment yields from rural unpaved roads were previously available for Oklahoma. Four rural unpaved road segments in the Stillwater Creek Watershed were instrumented in a paired watershed design to measure sediment yields to streams before and after the installation of Best Management Practices (BMPs). One segment of each pair remained under current management to serve as a control. The second segment received BMPs after a 1‐year calibration period. One BMP consisted of widening the ditches, re‐shaping ditches and cutslopes, putting a proper crown on the road surface, and vegetating disturbed areas with grass. The other BMP consisted of creating a proper crown on the road bed, applying a geo‐synthetic fabric to the road bed and surfacing with 127 mm of crusher run gravel containing 12‐15% fines to serve as a binder. Road segment sediment yields for individual storms varied, depending on factors such as rainfall amount and intensity. During the pre‐BMP year, storm sediment yields ranged from 0 to 4.3 Mg on one pair of segments and from 0 to 2.8 Mg on the other. The storm sediment yields and annual yields were in the same order of magnitude as sediment yields from unpaved rural or forest roads reported in other studies. Sediment yields were significantly reduced on both segments by the installation of BMPs, approximately 80% on one segment pair and 20% on the other. The average sediment yield (across the four segments) for the pre‐BMP year was 138 Mg/ha or 120 Mg/km of road. By extrapolating these average yields across the 479 km of unpaved roads in the Stillwater Creek Watershed and comparing it to estimated sediment yields for other land uses obtained from other sources, we conclude that unpaved roads may contribute up to 35% of the total sediment load to Stillwater Creek.  相似文献   

12.
A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models — Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport — to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT‐HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.  相似文献   

13.
Preston, Stephen D., Richard B. Alexander, Gregory E. Schwarz, and Charles G. Crawford, 2011. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States. Journal of the American Water Resources Association (JAWRA) 47(5):891‐915. DOI: 10.1111/j.1752‐1688.2011.00577.x Abstract: We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long‐term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales.  相似文献   

14.
The semiarid Carson River — Lahontan Reservoir system in Nevada, United States is highly contaminated with mercury (Hg) from historic mining with contamination dispersed throughout channel and floodplain deposits. Work builds on previous research using a fully dynamic numerical model to outline a complete conceptualization of the system that includes transport and fate of both sorbed and dissolved constituents. Flow regimes are defined to capture significant mechanisms of Hg loading that include diffusion, channel pore water advective flux, bank erosion, and overbank deposition. Advective flux of pore water is required to reduce dilution and likely represents colloidal‐mediated transport. Fluvial concentrations span several orders of magnitude with spatial and temporal trends simulated within 10‐24% error for all modeled species. Over the simulation period, 1991‐2008, simulated loads are 582 kg/yr (THg2+), 4.72 kg/yr (DHg2+), 0.54 kg/yr (TMeHg), and 0.07 kg/yr (DMeHg) with bank erosion processes the principal mechanism of loading for both total and dissolved species. Prediction error in the reservoir is within one‐order of magnitude and considered qualitative; however, simulated results indicate internal cycling within the receiving reservoir accounts for only 1% of the reservoir's water column contamination, with river channel sediment sources more influential in the upper reservoir and bank erosion processes having greater influence in the lower reservoir.  相似文献   

15.
Abstract: Nonpoint source pollution, which contributes to contamination of surface waters, is difficult to control. Some pollutants, particularly nitrate (), are predominantly transmitted through ground water. Riparian buffer zones have the potential to remove contaminants from ground water and reduce the amount of that enters surface water. This is a justification for setting aside vegetated buffer strips along waterways. Many riparian zone hydrologic models assume uniform ground‐water flow through organic‐rich soil under reducing conditions, leading to effective removal of ground‐water prior to discharge into a stream. However, in a small first‐order stream in the mid‐Atlantic coastal plain, base‐flow generation was highly variable (spatially and temporally). Average base‐flow loads were greater in winter than summer, and higher during a wetter year than in dryer years. Specific sections of the stream consistently received greater amounts of high ground water than others. Areas within the riparian zone responsible for most of the exported from the watershed are termed “critical areas.” Over this 5‐year study, most of the exported during base flow originated from a critical area comprising less than 10% of the total riparian zone land area. Allocation of resources to address and improve mitigation function in critical areas should be a priority for continued riparian zone research.  相似文献   

16.
Abstract: A stream mesocosm experiment was conducted to study the ecosystem‐wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engineering design criteria for urban stormwater management. Accordingly, the treatments (three replicates each) differed in base flow between events and in the rise to, fall from, and duration of peak flow during simulated storm hydrographs, which were triggered by real rain events occurring outside over a 96‐day period from summer to fall, 2005. Incident irradiance, initial substrate quality, and water quality were similar between treatments. Sampling was designed to study the interactions among the treatment flow dynamics, sediment transport processes, streambed nutrients, and biotic structure and function. What appeared most important to the overall structure and function of the mesocosm ecosystems beyond those changes resulting from natural seasonality were (1) the initial mass of fines that infiltrated into the gravel bed, which had a persistent effect on nitrogen biogeochemistry and (2) the subsequent fine sediment accumulation rate, which was unexpectedly similar between treatments, and affected the structure of the macroinvertebrate community equally as the experiment progressed. Invertebrate taxa preferring soft beds dominated when the gravel was comprised of 5‐10% fines. The dominant invertebrate algal grazer had vacated the channels when fines exceeded 15%, but this effect could not be separated from what appeared to be a seasonal decline in insect densities over the course of the study. Neither hydrograph treatment allowed for scour or other potential for flushing of fines. This demonstrated the potential importance of interactions between hydrology and fine sediment loading dynamics on stream ecosystems in the absence of flows that would act to mobilize gravel beds.  相似文献   

17.
Abstract: Systematic consideration of uncertainty in data, model structure, and other factors is generally unaddressed in most Total Maximum Daily Load (TMDL) calculations. Our previous studies developed the Management Objectives Constrained Analysis of Uncertainty (MOCAU) approach as an uncertainty analysis technique specifically for watershed water quality models, based on a synthetic case. In this study, we applied MOCAU to analyze diazinon loading in the Newport Bay watershed (Southern California). The study objectives included (1) demonstrating the value of performing stochastic simulation and uncertainty analysis for TMDL development, using MOCAU as the technique and (2) evaluating the existing diazinon TMDL and generating insights for the development of scientifically sound TMDLs, considering uncertainty. The Watershed Analysis Risk Management Framework model was used as an example of a complex watershed model. The study revealed the importance and feasibility of conducting stochastic watershed water quality simulation for TMDL development. The critical role of management objectives in a systematic uncertainty assessment was well demonstrated. The results of this study are intuitive to TMDL calculation, model structure improvement and sampling strategy design.  相似文献   

18.
Walton‐Day, Katherine, Robert L. Runkel, and Briant A. Kimball, 2012. Using Spatially Detailed Water‐Quality Data and Solute‐Transport Modeling to Support Total Maximum Daily Load Development. Journal of the American Water Resources Association (JAWRA) 48(5): 949‐969. DOI: 10.1111/j.1752‐1688.2012.00662.x Abstract: Spatially detailed mass‐loading studies and solute‐transport modeling using OTIS (One‐dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass‐loading data collected during low‐flow from Cement Creek (a low‐pH, metal‐rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL‐recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53‐63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse‐source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse‐source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.  相似文献   

19.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

20.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号