首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
本文分析了增压流化床燃烧联合循环中NOx,SOx,CO、CO2的形 成过程,介绍了控制增压流化床燃烧联合循环的NOx,SOx,CO、CO2和粉尘排放的最新研究成果。  相似文献   

2.
硅酸盐工业灰渣的基本化学成人是CaO、SiO2,Al2O3等,目前主要用于生产水泥等建筑材料, 西方对工业灰渣CaO-SiO2-Al2O3三元系高钙相平衡过程进行了分析讨论和数学处理。  相似文献   

3.
蚕豆根尖微核技术监测环境致突变物的研究   总被引:2,自引:0,他引:2  
本文应用蚕豆根尖微核技术对环境致突变物NaN3,HgCl2,K2Cr2O7进行诱变性研究,结果表明:NaN3,HgCl2,K2Cr2O7能明显诱发蚕豆根尖细胞微核率的增高,在一定范围内具有明显的线性剂量效应关系。说明该技术是监测环境致突变物的一种有效手段。  相似文献   

4.
关注解决水泥窑中排出的CO2CO2emisionfromCementKilnMustbeSetled据最新的工业科学统计显示,从水泥窑中排出的CO2远远超过飞机,几乎占所有产生温室效应的温室气体的10%,水泥生产过程中产生的CO2已达到全球CO2的7...  相似文献   

5.
用分光光度法测定水中化学需氧量CODCr,通过正交试验选择氧化的最佳选择。试验结果表明对CODCr值为50~1000mg/L的水样:氧化剂K2Cr2O7用量为0.20~0.40mol/L,催化剂Ag2SO4用量为10g/LH2SO4,消解时间10min,加热温度180℃。用CODCr为138mg/L的质控标样进行验证试验,其绝对误差为0.5~3.0mg/L。与标准方法相比用分光光度法测定CODCr具有分析误差小,省时、省力,节约药剂的特点。  相似文献   

6.
工业燃煤锅炉大气污染物控制技术(续)POLLUIONCONTROLFORINDUSTRIALCOAL-FIREDBOILERS(cont.)三、so2排放控制煤中含硫量多少决定SO2的排放量,因为只有一小部分硫在燃烧后仍残留在煤灰中。目前工业锅炉SO...  相似文献   

7.
油污土壤呼吸作用强度的测定   总被引:2,自引:0,他引:2  
通过土壤呼吸作用强度可以考察油污染物被微生物降解的情况,因此进行了土壤呼吸作用强度测定方法的研究。方法原理是用NaOH溶液吸收土壤呼吸释放出的CO2,然后再用酸滴定剩余的NaOH,从而计算出CO2释放量。测定结果说明添加菌和营养物的油污土壤呼吸作用强、释放的CO2量大、油降解量大。  相似文献   

8.
本试验采用UASB—接触氧化工艺对沤麻废水的处理进行了研究,系统启动两个月后达到稳定的处理效果,厌氧段进水COD浓度为700mg/1,有机负荷为9.25kgCOD/m3·d,停留时间为24小时,COD去除率可达到89.3%,好氧段接触氧化池的有机负荷为2.IkgCOD/m3·d,处理时间为10小时,整个系统总的COD去除率可达到97%,该工艺是处理高浓度沤麻废水行之有效的方法。  相似文献   

9.
以家用微波炉,全聚四氟乙烯微波消化罐和HNO3/H2O2消解体系溶样,选择最佳溶样条件,对发样和标准物质进行测定,并和传统湿法(HNO3/HCLO4)消解体系溶样做了对比,通过测定和比较,表明微波溶样具有较好的精密度和准确度,证明这一方法是可行的。  相似文献   

10.
居室内养花有益身心花卉不仅能美化环境、调节和丰富生活,而且还能调节气温、净化空气、保护和改善居室的生态环境。植物在夏季可降低气温5℃左右,冬天则能升高气温5℃,并可调节空气湿度6~9%。1m ̄2的绿叶每小时可吸收CO_21.5g,每吸收44gCO_2...  相似文献   

11.
Retention of gases by hexadecyltrimethylammonium-montmorillonite clays   总被引:1,自引:0,他引:1  
Intercalated montmorillonite clays with different amounts of organic hexadecyltrimethylammonium (HDTMA) cations were studied to analyse their CO, CH(4), and SO(2) gas retentions. Equilibrium adsorption was measured by using a standard volumetric apparatus at 25 degrees C and 0.1 MPa. The solids were characterised by X-ray diffraction. The levels of adsorption of SO(2) by organo-montmorillonites (0.3595-1.6403 mmol/g) were higher than those of CO (up to 0.0202 mmol/g) and CH(4) (up to 0.0273 mmol/g) gases. HDTMA montmorillonites may be effective adsorbents for removing SO(2) and for its potential separation in the presence of CO and/or CH(4) molecules, which can be present in contaminated air.  相似文献   

12.
The rise in atmospheric CO(2) concentration coupled with its direct, often positive, effect on the growth of plants raises the question of the response of invasive plants to elevated atmospheric CO(2) levels. Response of two invasive weeds [purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.)] to CO(2) enrichment was tested. Plants were exposed to ambient (375 micromol mol(-1)) or elevated CO(2) (ambient + 200 micromol mol(-1)) for 71 d in open top chambers. Photosynthetic rate did not differ between CO(2) treatments for either species. Conductance was lower in purple nutsedge and tended to be lower in yellow nutsedge. Purple nutsedge had higher instantaneous water use efficiency; a similar trend was noted for yellow nutsedge. Purple nutsedge had greater leaf area, root length and numbers of tubers and tended to have more tillers under high CO(2). In yellow nutsedge, only tuber number increased under CO(2) enrichment. Leaf dry weight was greater for both species when grown under elevated CO(2). Only purple nutsedge made seed heads; CO(2) level did not change seed head dry weight. Root dry weight increased under the high CO(2) treatment for purple nutsedge only, but tuber dry weight increased for both. Total dry weight of both species increased at elevated CO(2). Purple nutsedge (under elevated CO(2)) tended to increase allocation belowground, which led to greater root-to-shoot ratio (R:S); R:S of yellow nutsedge was unaffected by CO(2) enrichment. Findings suggest both species, purple more than yellow nutsedge, may be more invasive in a future high-CO(2) world.  相似文献   

13.
采用显示性比较优势理论,对2005-2010年我国华北地区5个省市人均CO2净排放和单位GDP CO2净排放的显示性比较优势做了分析;同时采用变异系数差异分析,结合空间自相关分析方法,对其空间格局和演变规律做了深入研究.研究发现,华北地区5省市人均CO2净排放高于全国平均水平.北京、天津、河北、山西4个省市出现下滑势头,而内蒙古自治区呈现大幅上升势头.山西单位GDP CO2净排放在全国最高,天津和北京低于全国平均水平.华北地区人均CO2净排放和单位GDP CO2净排放比较优势空间分别呈现负相关和正相关特性.  相似文献   

14.
Among greenhouse gases, carbon dioxide (CO(2)) is one of the most significant contributors to regional and global warming as well as climatic change. A field study was conducted to (i) determine the effect of soil characteristics resulting from changes in soil management practices on CO(2) flux from the soil surface to the atmosphere in transitional land from perennial forages to annual crops, and (ii) develop empirical relationships that predict CO(2) flux from soil temperature and soil water content. The CO(2) flux, soil temperature (T(s)), volumetric soil water content (theta(v)) were measured every 1-2 weeks in no-till (NT) and conventional till (CT) malt barley and undisturbed soil grass-alfalfa (UGA) systems in a Lihen sandy loam soil (sandy, mixed, frigid Entic Haplustoll) under irrigated and non-irrigated conditions in western North Dakota. Soil air-filled porosity (epsilon) was calculated from total soil porosity and theta(v) measurements. Significant differences in CO(2) fluxes between land management practices (irrigation and tillage) were observed on some measurement dates. Higher CO(2) fluxes were detected in CT plots than in NT and UGA treatments immediately after rainfall or irrigation. Soil CO(2) fluxes increased with increasing soil moisture (R(2)=0.15, P<0.01) while an exponential relationship was found between CO(2) emission and T(s) (R(2)=0.59). Using a stepwise regression analysis procedure, a significant multiple regression equation was developed between CO(2) flux and theta(v), T(s) (CO(2) [Formula: see text] ; R(2)=0.68, P0.01). Not surprisingly, soil temperature was a driving factor in the equation, which accounted for approximately 59% in variation of CO(2) flux. It was concluded that less intensive tillage, such as no-till or strip tillage, along with careful irrigation management will reduce soil CO(2) evolution from land being converted from perennial forages to annual crops.  相似文献   

15.
Elevated CO2 concentrations expected in the 21st century can stimulate plant growth and yield, whereas tropospheric O3 suppresses plant growth and yield in many areas of the world. Recent experiments showed that elevated CO2 often protects plants from O3 stress, but this has not been tested for many important crop species including snap bean (Phaseolus vulgaris L.). The objective of this study was to determine if elevated CO2 protects snap bean from O3 stress. An O3-tolerant cultivar (Tenderette) and an O3-sensitive selection (S156) were exposed from shortly after emergence to maturity to mixtures of CO2 and O3 in open-top field chambers. The two CO2 treatments were ambient and ambient with CO2 added for 24 h d(-1) resulting in seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 366 and 697 microL L(-1), respectively. The two O3 treatments were charcoal-filtered air and nonfiltered air with O3 added for 12 h d(-1) to achieve seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 23 and 72 nL L(-1), respectively. Elevated CO2 significantly stimulated growth and pod weight of Tenderette and S156, whereas elevated O3 significantly suppressed growth and pod weight of S156 but not of Tenderette. The suppressive effect of elevated O3 on pod dry weight of S156 was approximately 75% at ambient CO2 and approximately 60% at elevated CO2 (harvests combined). This amount of protection from O3 stress afforded by elevated CO2 was much less than reported for other crop species. Extreme sensitivity to O3 may be the reason elevated CO2 failed to significantly protect S156 from O3 stress.  相似文献   

16.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   

17.
大多数天然气藏CO2含量为10%~98%,CO2在不同的温度、压力条件下腐蚀极其严重。文章主要针对高含CO2天然气运输管道腐蚀的问题,开展缓蚀剂的筛选,重点开展CO2腐蚀规律研究与实验,评价环境温度、CO2分压、流动速度对腐蚀规律的影响,明确缓蚀剂的影响因素,结合管材的材质,优选评价不同类型的缓蚀剂,缓蚀效率分别为90.53%和92.64%,在管道凝液介质的气相及液相中都有较高的缓蚀效率。通过设计现场加药工艺及制度,监测评价缓蚀剂缓释效果和腐蚀情况,可防止管道运输过程中CO2腐蚀的侵害,长输管线内腐蚀控制良好。  相似文献   

18.
Nitrogen application can have a significant effect on soil carbon (C) pools, plant biomass production, and microbial biomass C processing. The focus of this study was to investigate the short-term effect of N fertilization on soil CO(2) emission and microbial biomass C. The study was conducted from 2001 to 2003 at four field sites in Iowa representing major soil associations and with a corn (Zea mays L.)-soybean (Glycine max L. Merr.) rotation. The experimental design was a randomized complete block with four replications of four N rates (0, 90, 180, and 225 kg ha(-1)). In the corn year, season-long cumulative soil CO(2) emission was greatest with the zero N application. There was no effect of N applied in the prior year on CO(2) emission in the soybean year, except at one of three sites, where greater applied N decreased CO(2) emission. Soil microbial biomass C (MBC) and net mineralization in soil collected during the corn year was not significantly increased with increase in N rate in two out of three sites. At all sites, soil CO(2) emission from aerobically incubated soil showed a more consistent declining trend with increase in N rate than found in the field. Nitrogen fertilization of corn reduced the soil CO(2) emission rate and seasonal cumulative loss in two out of three sites, and increased MBC at only one site with the highest N rate. Nitrogen application resulted in a reduction of both emission rate and season-long cumulative emission of CO(2)-C from soil.  相似文献   

19.
In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.  相似文献   

20.
利用长沙市城区2011年及2012年连续自动监测获得的CO2数据,两年的平均值为412.2×10^-6,高于世界本底站青海瓦里关5.6%,与临安、无锡相当,略高于乌鲁木齐,而低于北京、上海。冬季CO2浓度日小时变化呈现双峰形态,峰值出现在上午9时及晚上19时~21时。夏季日小时变化为单峰形态,峰值出现在上午8时。冬季CO2浓度日均值为420.3×10^-6,比夏季高3.4%。CO2除与O3呈负相关以外,与其它污染物均呈现显著性正相关,特别是与CO、NO、NO2、NOx、SO2的相关性最强,而与颗粒物(PM10、PM25)的相关性稍差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号