首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Dust aerosols play an important role in modulating the hydrologic cycle. The Tibetan Plateau (TP) is little polluted by human activities as an ideal site to study the effect of dust aerosol on precipitation. In this study, observational data of dust storms and precipitation in the TP and its vicinities as well as CALIPSO satellite data were used to analyze the distributions and vertical structure of dust storms on the plateau. The results showed that dust storms occur with high frequency and raise dust particles into the troposphere from ground level to a height of 5–9 km to modulate the hydrologic cycle in the TP. There are significant negative correlations between dust aerosol and precipitation in the dust source regions during the period of both 40 and 200 years. It is found that the role of precipitation in suppressing dust storms could be unimportant, while dust aerosol may play an important role in suppressing precipitation in the hinterland of the TP. Our study provides a potential approach to better understand the climate changes in the TP.  相似文献   

2.
Windblown dust contributes to high PM2.5 concentrations   总被引:5,自引:0,他引:5  
The revised National Ambient Air Quality Standards for PM include fine particulate standards based upon mass measurements of PM2.5. It is possible in arid and semi-arid regions to observe significant coarse mode intrusion in the PM2.5 measurement. In this work, continuous PM10, PM2.5, and PM1.0 were measured during several windblown dust events in Spokane, WA. PM2.5 constituted approximately 30% of the PM10 during the dust event days, compared with approximately 48% on the non-dusty days preceding the dust events. Both PM10 and PM2.5 were enhanced during the dust events. However, PM1.0 was not enhanced during dust storms that originated within the state of Washington. During a dust storm that originated in Asia and impacted Spokane, PM1.0 was also enhanced, although the Asian dust reached Washington during a period of stagnation and poor dispersion, so that local sources were also contributing to high particulate levels. The "intermodal" region of PM, defined as particles ranging in aerodynamic size from 1.0 to 2.5 microns, was found to represent a significant fraction of PM2.5 (approximately 51%) during windblown dust events, compared with 28% during the non-dusty days before the dust events.  相似文献   

3.
Quantitative information on the contribution of dust storms to atmospheric PM10 (particulate matter with an aerodynamic diameter ≤10 µm) levels is still lacking, especially in urban environments with close proximity to dust sources. The main objective of this study was to quantify the contribution of dust storms to PM10 concentrations in a desert urban center, the city of Beer-Sheva, Negev, Israel, during the period of 2001–2012. Toward this end, a background value based on the “dust-free” season was used as a threshold value to identify potentially “dust days.” Subsequently, the net contribution of dust storms to PM10 was assessed. During the study period, daily PM10 concentrations ranged from 6 to over 2000 µg/m3. In each year, over 10% of the daily concentrations exceeded the calculated threshold (BVt) of 71 µg/m3. An average daily net contribution of dust to PM10 of 122 µg/m3 was calculated for the entire study period based on this background value. Furthermore, a dust storm intensity parameter (Ai) was used to analyze several storms with very high PM10 contributions (hourly averages of 1000–5197 μg/m3). This analysis revealed that the strongest storms occurred mainly in the last 3 yr of the study. Finally, these findings indicate that this arid urban environment experiences high PM10 levels whose origin lies in both local and regional dust events.

Implications:The findings indicate that over time, the urban arid environment experiences high PM10 levels whose origin lies in local and regional dust events. It was noticed that the strongest storms have occurred mainly in the last 3 yr. It is believed that environmental changes such as global warming and desertification may lead to an increased air pollution and risk exposure to human health.  相似文献   


4.
ABSTRACT

The revised National Ambient Air Quality Standards for PM include fine particulate standards based upon mass measurements of PM25. It is possible in arid and semi-arid regions to observe significant coarse mode intrusion in the PM2.5 measurement. In this work, continuous PM10, PM2.5, and PM1.0 were measured during several windblown dust events in Spokane, WA. PM2 5 constituted ~30% of the PM10 during the dust event days, compared with ~48% on the non-dusty days preceding the dust events. Both PM10 and PM2.5 were enhanced during the dust events. However, PM1.0 was not enhanced during dust storms that originated within the state of Washington. During a dust storm that originated in Asia and impacted Spokane, PM1.0 was also enhanced, although the Asian dust reached Washington during a period of stagnation and poor dispersion, so that local sources were also contributing to high particulate levels. The “intermodal” region of PM, defined as particles ranging in aerodynamic size from 1.0 to 2.5 um, was found to represent a significant fraction of PM25 (~51%) during windblown dust events, compared with 28% during the non-dusty days before the dust events.  相似文献   

5.
The Chihuahuan Desert region of North America is a significant source of mineral aerosols in the Western Hemisphere, and Chihuahuan Desert dust storms frequently impact the Paso del Norte (El Paso, USA/Ciudad Juarez, Mexico) metropolitan area. A statistical analysis of HYSPLIT back trajectory residence times evaluated airflow into El Paso on all days and on days with synoptic (non-convective) dust events in 2001–2005. The incremental probability—a measure of the areas most likely to have been traversed by air masses arriving at El Paso during dusty days—was only strongly positively associated with the region west–southwest of the city, a zone of known dust source areas. Focused case studies were made of major dust events on 15 April and 15 December 2003. Trajectories approached the surface and MM5 (NCAR/Penn State Mesoscale Model) wind speeds increased at locations consistent with dust sources observed in satellite imagery on those dates. Back trajectory and model analyses suggested that surface cyclones adjacent to the Chihuahuan Desert were associated with the extreme dust events, consistent with previous studies of dust storms in the Southern High Plains to the northeast. The recognition of these meteorological patterns serves as a forecast aid for prediction of dust events likely to impact the Paso del Norte.  相似文献   

6.
Measurements of size-resolved particle number concentrations during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign were made at the Gosan super-site, South Korea. In East Asia, dust and precipitation phenomena play a crucial role in atmospheric environment and climate studies because they are major sources and sinks of atmospheric aerosols, especially in the springtime. Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and backward trajectories are analyzed to investigate the spatial and temporal evolution of dust storms. The size distributions between dust and non-dust periods and times with and without precipitation are compared. In order to understand the temporal evolution of the aerosol size distribution during dust and precipitation events, a simple aerosol dynamics model is employed. The model predicted and observed size distributions are compared with the measured data. The results show that the coarse mode particle number concentrations increase by a factor of 10–16 during dust events. During precipitation, however, particles in the coarse mode are scavenged by impaction mechanism. It is found that the larger particles are more efficiently scavenged. The degree of scavenged particle varies depending on the rainfall rate, raindrop size distribution and aerosol size distribution.  相似文献   

7.
Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland (“Reykjavik haze”), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events.

Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured.

Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

Implications: Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and provides a unique perspective of the dust aerosol production from natural sources in the sub-Arctic Iceland. The amounts are staggering, and with this paper, it is clear that Icelandic dust sources need to be considered among major global dust sources. This paper presents the dust events directly affecting the air quality in the Arctic region.  相似文献   


8.
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future.

Implications: Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.  相似文献   


9.
Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored.  相似文献   

10.
Hourly data of PM10 concentration collected from an air quality-monitoring network has been analyzed over Taiwan from 1994 to 1999. Fourteen sites from 72 monitoring stations were selected to evaluate the spatial and seasonal variations in the regions of north, southwest, south, east and National Park. The selected monitoring sites are located in a suburban environment, except Nantz and Linyuan that are located in industrial areas. Moreover, Yangming and Hengchuen are located in National Park. Spatial and seasonal variations of PM10 concentrations are rather large over Taiwan. Annual average in south is approximately six times higher than in National parks. In northern sites, the highest concentration occurs in March–May, which is attributed to the occurrence of dust storms in arid regions of central Asia and the transport of dust by northeasterly monsoon. A marked seasonal variation of PM10 concentrations can be observed both in southwestern and southern regions. The pattern is characterized by high concentrations in winter and low in summer. Appearance of the highest monthly PM10 concentration in winter of south may be in part due to the lowest number of monthly precipitation days and low temperature, both of which occurred in winter. The frequency of PM10 daily mean concentration for exceeded 150 μg m−3 is 15% during winter in south, which reflects the serious pollution problem there. Monitoring sites in National Park are representatives of remote environments, but the PM10 concentrations are still affected by the dust storms and human activities.  相似文献   

11.
The Chihuahuan Desert region is an important contributor to atmospheric dust loading and transport in North America; however, specific dust sources in this region are poorly characterized. Major dust events frequently are characterized by multiple dust plumes developing nearly simultaneously over a large region. Remote sensing data were used to identify the source locations and associated land cover for the most extreme dust events in the Chihuahuan Desert since 2002. Analysis of infrared channels utilizing brightness temperature differences was used to analyze data from geostationary and polar-orbiting satellites, from which dust sources were determined and located. This methodology was applied to the five dust events in the region that resulted in “hazardous” PM10 levels in Texas per the USEPA’s Air Quality Index. Source locations determined from satellite images were used in conjunction with LANDSAT data and Google Earth? images to determine the corresponding land-surface features. Agricultural lands, playas, and their edges are pointed out as focus areas for dust emission, at least during the most intense events. The 130 dust plume initiation sites were relatively uniformly spaced over the landscape, not clumped into a few “hotspots,” suggesting the role of spatiotemporally random meteorological factors in determining major points of emission within and between dust storms. These findings provide an initial characterization of Chihuahuan Desert dust source locations and establish a baseline for continued research in determining potential locations for future dust outbreaks in the southwestern U.S. and northwestern Mexico.  相似文献   

12.
Payet R  Agricole W 《Ambio》2006,35(4):182-189
The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre-IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCM3 model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.  相似文献   

13.
Changes in climate are occurring around the world and the effects on ecosystems will vary, depending on the extent and nature of these changes. In northern Europe, experts predict that annual rainfall will increase significantly, along with dramatic storm events and flooding in the next 50-100 years. Scotland is a stronghold of the endangered freshwater pearl mussel, Margaritifera margaritifera (L.), and a number of populations may be threatened. For example, large floods have been shown to adversely affect mussels, and although these stochastic events were historically rare, they may now be occurring more often as a result of climate change. Populations may also be affected by a number of other factors, including predicted changes in temperature, sea level, habitat availability, host fish stocks and human activity. In this paper, we explain how climate change may impact M. margaritifera and discuss the general implications for the conservation management of this species.  相似文献   

14.
Environmental Science and Pollution Research - Dust storms affect the primary productivity of the ocean by providing necessary micronutrients to the surface layer. One such dust storm during March...  相似文献   

15.
The mineral insoluble fraction of snowpit samples collected at Summit is investigated, representing deposition from summer 1987 to summer 1991. We attempt to describe the particles which are observed in the series, with very large seasonal variations. Elemental, mineralogical and size distribution studies are carried out on four samples selected according to the chemical profile of the snowpit (two samples from spring and two from winter) using X-ray fluorescence spectrometry and analytical transmission electron microscopy. Results indicate a large predominance of the soil-derived particles originating from arid or semi-arid regions of the Northern Hemisphere. The mineralogy clearly indicates a high contribution for the muscovite-illite associated with a low kaolinite/chlorite ratio, together with the rather lack of smectite. This supports the hypothesis of an Asian source. Several other factors are consistent with this Asian source, like the recent climatology and the good timing between the Asian dust storms period and the peak of dust concentration in the ice. The mineralogy of the insoluble particles in the snow is similar between winter and spring, suggesting that the change of concentration between the seasons is more strongly linked to changes of atmospheric parameters than changes of the source regions.  相似文献   

16.
Bio-investigations for pollen and spores were performed on dry free-fall dust and PM10 aerosol samples, collected from three different locations separated by a distance of 600 km, situated in dust storm hit region of N–NW India. Presence of pollen of trees namely Prosopis (Prosopis juliflora and Prosopis cinearia), Acacia, Syzygium, Pinus, Cedrus, Holoptelea and shrubs namely Ziziphus, Ricinus, Ephedra and members of Fabaceae, Oleaceae families was recorded but with varying proportions in the samples of different locations. Poaceae, Chenopodiaceae/Amaranthaceae, Caryophyllaceae, Brassicaceae and Cyperaceae (sedges) were some of the herb pollen identified in the samples. Among the fungal spores Nigrospora was seen in almost all samples. Nigrospora is a well known allergen and causes health problems. The concentration of trees and shrubs increases in the windward direction just as the climate changes from hot arid to semiarid. The higher frequency of grasses (Poaceae) or herbs could either be a result of the presence of these herbs in the sampling area and hence the higher production of pollen/spores or due to the resuspension from the exposed surface by the high-intensity winds. But we cannot ascertain the exact process at this stage. The overall similarity in the pollen and spore assemblage in our dust samples indicates a common connection or source(s) to the dust in this region. Presence of the pollen of the species of Himalayan origin in our entire samples strongly point towards a Himalayan connection, could be direct or indirect, to the bioaerosols and hence dust in N–NW India. In order to understand the transport path and processes involved therein, present study needs further extension with more number of samples and with reference to meteorological parameters.  相似文献   

17.
The relation of interannual connection between Asian dust outbreaks and stratosphere-to-troposphere transport (STT) in spring was suggested by the dust and tritium variations in the Mount Wrangell ice core, Alaska in [Yasunari, T.J., Shiraiwa, T., Kanamori, S., Fujii, Y., Igarashi, M., Yamazaki, K., Benson, C.S., Hondoh, T., 2007. Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an ice core from Mount Wrangell, Alaska. J. Geophys. Res., 112, D10208. doi: 10.1029/2006JD008121]. However, these impacts on the ice core site in each event scale have not been investigated. Hence, the present paper focuses on the material transport and deposition processes for further understanding these impacts on the ice core. The variations in dust and tritium concentrations in spring in an ice core taken at Mt. Wrangell, Alaska are explained by meteorological analysis and simulation of trajectories associated with Asian dust outbreaks and STT. Material transport and deposition at Mt. Wrangell are examined in two contrasting years (2001 and 2002). Dust and tritium concentrations both reached peak values in the early spring of 2002, while the dust peak occurred in early spring and the tritium peak occurred in late spring in 2001. Six severe East Asian transpacific dust storms over this period are modeled by forward trajectory and meteorologically analyzed. It is found that 5 of 6 events contributed to the ice core record in Alaska. Stratospheric air is also transported to the ice core site in most cases. Tritium deposition is found to have been suppressed in the cases of the 2001 dust storms due to lack of snowfall at appropriate times. Taken the detailed transport and deposition processes after the severe dust storms with atmospheric circulations into account, we can well explain spring dust and tritium variations in the Mount Wrangell ice core.  相似文献   

18.
Nine dust storms in south-central Arizona were simulated with the Weather Research and Forecasting with Chemistry model (WRF-Chem) at 2 km resolution. The windblown dust emission algorithm was the Air Force Weather Agency model. In comparison with ground-based PM10 observations, the model unevenly reproduces the dust-storm events. The model adequately estimates the location and timing of the events, but it is unable to precisely replicate the magnitude and timing of the elevated hourly concentrations of particles 10 µm and smaller ([PM10]).Furthermore, the model underestimated [PM10] in highly agricultural Pinal County because it underestimated surface wind speeds and because the model’s erodible fractions of the land surface data were too coarse to effectively resolve the active and abandoned agricultural lands. In contrast, the model overestimated [PM10] in western Arizona along the Colorado River because it generated daytime sea breezes (from the nearby Gulf of California) for which the surface-layer speeds were too strong. In Phoenix, AZ, the model’s performance depended on the event, with both under- and overestimations partly due to incorrect representation of urban features. Sensitivity tests indicate that [PM10] highly relies on meteorological forcing. Increasing the fraction of erodible surfaces in the Pinal County agricultural areas improved the simulation of [PM10] in that region. Both 24-hr and 1-hr measured [PM10] were, for the most part, and especially in Pinal County, extremely elevated, with the former exceeding the health standard by as much as 10-fold and the latter exceeding health-based guidelines by as much as 70-fold. Monsoonal thunderstorms not only produce elevated [PM10], but also cause urban flash floods and disrupt water resource deliveries. Given the severity and frequency of these dust storms, and conceding that the modeling system applied in this work did not produce the desired agreement between simulations and observations, additional research in both the windblown dust emissions model and the weather research/physicochemical model is called for.

Implications: While many dust storms can be considered to be natural, in semi-arid climates such storms often have an anthropogenic component in their sources of dust. Applying the natural, exceptional events policy to these storms with strong signatures of anthropogenic sources would appear not only to be misguided but also to stifle genuine regulatory efforts at remediation. Those dust storms that have resulted, in part, from passage over abandoned farm land should no longer be considered “natural”; policymakers and lawmakers need to compel the owners of such land to reduce its potential for windblown dust.  相似文献   


19.
Concentrations of ions in storm rainwater in Texas have been monitored for each 0.254 mm increment of precipitation. The changes in concentrations have been analyzed to investigate the role of differential rates of scavenging of particulate matter of differing particle size, and especially the major acid and base components. The empirical trend at the onset of rainfall is a chemical fractionation of acids and bases with correspondingly wide pH variations. These results are confirmed by model calculations, which show a significant preferential scavenging of calcium relative to sulfate in the first 10 mm of rainfall, resulting in fractionation of bases and acids from their atmospheric concentrations. Previous studies, using Target Transformation Factor Analysis of ion concentrations in storm precipitation and regional ambient aerosol data, statistically determined the average source for acidic secondary species and alkaline particulate matter. Two types of crustal sources were identified as western and eastern soil dust. In this study, an alternate physical explanation for these two soil dust factors is offered. As a storm progresses, the elements in the local soil dust are fractionated as a result of their differential rates of precipitation scavenging, enriching species predominantly in the fine particle size and depleting elements predominantly in the coarse particle size. This fractionation process results in a single source having different elemental ratios at the beginning and at the end of a rain event. For Austin, Dallas, and Tyler, Texas, the soil dust previously identified as being from eastern sources could, instead, be a fractionated form of the western soil source.  相似文献   

20.
Tareq SM  Tanoue E  Tsuji H  Tanaka N  Ohta K 《Chemosphere》2005,59(11):1655-1665
Evidence of changing vegetation in the tropical wetland (Rawa Danau, west Java, Indonesia) over the past 7428 years is illustrated by elemental (soot) carbon (EC) and n-alkane composition of sedimentary geolipids. In this study, vegetation changes and relevant controlling factors (e.g. forest fire and climate change) were documented on a decadal to centennial scale. The n-alkane composition that changes with depth might record changes in sources of organic matter (OM) in the wetland. The presence of EC (0.01–0.24% of organic carbon: OC) during late (0–1700 cal. year BP) and mid (3500–4500 cal. year BP) Holocene (at depths 0–50 cm, and 160–210 cm) indicated that large-scale forest fires severely affected the tropical vegetation. The hydrocarbon indices (CPI: carbon preference index, MCN: mean carbon number, and HVI: hydrocarbon vegetation index) significantly correlated with one another while a comparison of EC profile with the profiles of hydrocarbon indices indicated that n-alkane composition of the geolipid in lake sediment could record signatures of changes in catchment vegetation. Forest fire and vegetation changes might be related to regional climatic shifts relating to ENSO activity as well as being influenced by human influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号