首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
近50a中国西南地区地表干湿状况研究   总被引:12,自引:10,他引:12  
利用1961—2011 年中国西南5 省市113 个气象站的观测资料,基于Penman-Monteith 蒸散模型计算了各个站点逐月潜在蒸散和干湿指数,研究了近50 a 来西南地区气候干湿状况的时空变化特征。结果表明:西南地区气候整体较为湿润,但存在较大的区域差异,呈“东湿西干”的空间分布特征。近50 a 来西南区域的气候有“暖干化”的变化趋势,这种趋势在进入21 世纪以后有进一步加剧的迹象。西南地区干湿季特征鲜明,夏季最为湿润,冬季最干燥。近50 a 来,西南地区的气候干湿状况有两次显著的转变过程,第一次时间点在1992 年前后,此时气候开始湿润化,进入相对湿润期;另一次在2002 年前后,变化趋势由湿润化转为干旱化,进入相对干旱期。降水量是西南地区气候干湿状况的决定因素,日照时数与相对湿度等气象要素对干湿状况也产生较大影响。  相似文献   

2.
三峡库区降水化学组成及时空变化特征   总被引:5,自引:2,他引:5  
对2000-2009年三峡库区巴南、涪陵和万州3个观测点降水的pH、电导率及其主要化学成分的时空变化进行了分析研究.结果表明,巴南、涪陵、万州降水pH平均值分别为5.76、6.03和5.52,平均电导率分别为117.3、72.3和63.1 μS·cm-1,降水酸化趋势在逐渐增强,污染程度高于北京、成都、深圳、湖南等地.降水中SO42-占阴离子总量的77%,NH4+和Ca2为主要的阳离子.巴南、涪陵、万州3个监测点的[NO3-]/[SO42-]比值较低,分别为0.125、0.164和0.169,表明降水酸化类型为硫酸型.由于排放与气象条件(包括降雨量等)的季节性变化,各离子组分呈现明显的时空变化特征,总体表现为冬春季降水中离子浓度高于夏秋季,污染程度为巴南>涪陵>万州.  相似文献   

3.
长三角地区地表干湿状况及极端干湿事件特征研究   总被引:2,自引:0,他引:2  
徐羽  吴艳飞  徐刚  刘敏 《自然资源学报》2017,32(9):1579-1590
利用Penman-Monteith模型及1957—2014年长三角地区43个气象站点逐日降水、气温、风速、日照时数及空气相对湿度实测数据,对参考作物蒸散量、地表湿润指数和极端干旱/湿润事件进行了计算和统计。运用线性回归、Trend-free pre-whitening (TFPW) Mann-Kendall趋势检验、Morlet小波分析等方法,分析了研究区地表湿润指数及极端干湿事件的时空分布特征。结果显示:1)近58 a长三角地区年及季节平均湿润指数在空间上呈南高北低分布格局;2)年湿润指数呈波动下降趋势,变化倾向率为-0.021/10 a,气候趋于干旱化。湿润期集中在20世纪80、90年代。突变年为2003年,并存在多个振荡周期。四季中,春秋季气候趋于干旱化,冬夏季反之。年际湿润指数变异系数和变化趋势存在明显的空间差异;3)年极端干旱事件发生频率呈波动上升趋势,年极端湿润事件则呈现微弱的下降趋势,均存在空间差异。  相似文献   

4.
运用相关分析、因子分析、富集因子和HYSPLIT模型对石羊河流域从2013年7月到2014年7月连续收集降水样品的主要离子浓度特征及来源进行了探讨分析,结果表明,Ca~(2+)和Na~+是主要的阳离子,SO_4~(2-)和NO_3~-是主要的阴离子,石羊河流域的主要降水类型为SO_4~(2-)-NO_3~--Ca~(2+);石羊河流域的总离子浓度的季节大小变化顺序为冬季春季秋季夏季,石羊河流域的降水水化学主要受地壳源和人为源的影响;石羊河流域的降水类型分为季风降水、西风降水和混合降水,而混合降水是石羊河流域的主要降水类型,其次为西风降水,最后为季风降水。  相似文献   

5.
1961—2017年青藏高原极端降水特征分析   总被引:1,自引:0,他引:1  
基于青藏高原78个气象站点的逐日降水数据,采用百分位阈值法确定极端降水阈值,计算极端降水指数并分析其时空分布特征,以期为区域气候变化预测及防灾减灾对策的制定提供参考。结果表明:(1)1961—2017年青藏高原年降水量表现出上升趋势,上升速率为8.06 mm/10 a,多年平均降水量达472.36 mm。78个站点的年降水量倾向率最小值为-25.46 mm/10 a,最大值为43.02 mm/10 a,有15.38%的站点降水在下降,较为集中地分布在高原的东部和南部,其余84.62%的站点降水量在上升。(2)青藏高原各站点极端降水阈值的平均值为23.11 mm,取值范围为7.84~51.90 mm。高值中心出现在横断山区的贡山和木里,低值中心出现在柴达木盆地及昆仑山北翼区。(3)青藏高原各站点的极端降水量、极端降水日数和极端降水贡献率均表现出了明显的上升趋势,极端降水强度虽然也在上升但趋势并不明显,表明青藏高原极端降水量的上升并非是极端降水的强度引起的,而是由极端降水频次的上升引起的。柴达木盆地的极端降水量和极端降水日数虽然并没有表现出高值水平,但该地区的极端降水贡献率却表现出较高水平...  相似文献   

6.
基于高分辨率格点观测数据的青藏高原降水时空变化特征   总被引:3,自引:0,他引:3  
基于青藏高原地区1961-2010 年高分辨率的逐日降水格点资料,按多雨区、相对少雨区、相对多雨区、少雨区和干旱少雨区选取青藏高原8 个研究区域。对近50 a 青藏高原年和季节降水量的分布形式以及变化趋势进行了分析。结果表明:青藏高原平均年降水分布不均匀,存在区域差异,呈现出由其东南部向西北部递减的分布形式。且同时存在季节差异,夏季降水最多,其次是春季和秋季,冬季降水最少。其中夏季降水分布形式与年降水分布形式对应较好;其他季节降水普遍集中在高原南部、东南部以及西南部。年降水变化以102°E为界,以东降水逐年减少,以西增加。季节降水变化趋势存在明显的区域和时域差异,在降水量较大的季节和区域,其降水增加趋势相应较大,反之较小。四季中除了夏季位于高原中东部较大范围的降水减少区以及冬季拉萨地区附近的两个降水减少中心外,其他地区各季节都表现出降水增加的趋势。  相似文献   

7.
基于ENSO发展过程的中国夏季降水时空变化特征   总被引:1,自引:0,他引:1  
利用1961—2019年中国地面降水月值格点数据,结合趋势分析、合成分析及T检验等气候诊断方法,对中国夏季降水时空变化特征进行分析,进而探讨不同类型ENSO事件对应夏季降水规律。结果表明:20世纪60—90年代末,长江、淮河夏季降水波动增加,海河降水持续下降,符合“南涝北旱”空间特征;21世纪后,除淮河夏季降水下降之外,其他流域降水均呈增加趋势;对于不同ENSO发展类型而言,以厄尔尼诺为主导的事件,副高脊线西伸增强,中国夏季多雨区集中在江淮地区,由南向北呈现“中间涝,南北旱”的空间格局;以拉尼娜为主导的事件中,副高脊线东移、控制面积缩小,中国夏季降水在胡焕庸线两侧、华南降水明显偏少;对于两种转换型事件而言,当前冬发生厄尔尼诺、夏季转为拉尼娜时,副高西伸且面积扩大,中国夏季降水偏多;反之,副高东移且面积缩小,中国夏季降水整体偏少。  相似文献   

8.
全球气候变暖背景下,中国的降水分布日趋复杂,气象灾害造成的损失巨大。为满足防灾减灾与水资源管理的数据支撑需求,基于长江上游重庆段近20 a降水数据,利用线性回归、M-K非参数检验等方法,探究降水的时间变化趋势与空间分异特征。结果表明:近20 a重庆市年降水量在875.6—1348.2 mm。时间上,春、秋两季呈明显增多的趋势,其中3月最显著。降水在14 a时间尺度的周期过程线中波动最强,是第一主周期。空间分布上,呈西低东高的特点,在渝西和长江河谷地区降水相对偏少,主要受重庆地形的影响;渝西和渝东北地区秋季降水显著增多。研究结果可为长江流域旱涝灾害防治、水资源开发利用及经济社会可持续发展提供数据支撑,同时可为植被修复与生态廊道保障提供参考。  相似文献   

9.
1982-2003年中国草地生物量时空格局变化研究   总被引:9,自引:0,他引:9  
论文结合草地生物量调查资料、对应时段NDVI数据,分析了1982-2003年不同时期我国草地生物量空间格局变化特征及其与气候变化的关系。结果表明:20世纪80年代初期到末期,全国大部分地区草地生物量增加或基本持平;80年代末期到90年代初,大面积范围内草地生物量降低,热性草丛、温性草甸草原、山地草甸、低地草甸下降幅度分别为10.86%、4.96%、4.86%、3.49%;90年代末期后,北方大部分地区草地生物量上升到80年代的水平,南方草地生物量略有上升;1982-2003年草原区平均气温上升0.6~1.5℃,降雨量减少23.3%,草地生物量变化与降水量变化有弱相关关系(相关系数0.29),与气温变化无关。  相似文献   

10.
红河流域1960-2007年极端降水事件的时空变化特征   总被引:2,自引:0,他引:2  
利用中国境内红河流域23个气象站点1960-2007年的逐日降水数据,基于极端降水指数分析流域极端降水事件的时空变化特征。结果表明:极端降水频次和强度表现出从东南向西北递减的特征,高值区分布在江城-绿春-金平-河口一线以南,低值区分布在巍山-南涧-弥渡一线以北及元江中游河谷;极端降水频次峰值出现在7月,汛期极端降水出现频次占全年的91.48%。1960-2007年期间,极端降水指数均表现出上升趋势,其中,极端降水贡献率和平均日降水强度上升趋势较为显著,线性趋势值分别为0.68%·(10 a)-1和0.17 mm·d-1·(10 a)-1。除了平均日降水强度整体上表现出上升的趋势外,其余5个极端降水指数趋势变化具有空间差异性,增加的站点大多分布在李仙江上游、 元江中上游和藤条江流域,减小的站点大多分布在李仙江下游、 元江下游和盘龙河流域。  相似文献   

11.
1961-2009年黄土高原气象要素的时空变化分析   总被引:9,自引:2,他引:7  
基于48个气象站点1961-2009年的监测数据,使用反距离权重插值法和Mann-Kendall法,分析了黄土高原气象要素的空间分布和时间变化特征.结果表明,各气象要素在黄土高原都呈梯度分布,沿东南-西北方向降水和平均温度递减而平均风速和日照时数递增,沿南北方向相对湿度降低而参考作物蒸散增加.各气象要素在各站点基本都具有单调趋势,但趋势显著的站点数存在变异.约98%的站点温度的上升趋势显著,约60%的站点日照时数和风速的下降趋势及参考作物蒸散的上升趋势具有显著性,约40%的站点相对湿度的下降趋势显著,约30%的站点的降水具有显著的下降趋势.各气象变量都存在一定的年代际变化,相对湿度在2004年以来显著降低,降水的显著减少、 年均温度和参考作物蒸散的显著上升都在20世纪90年代初以来,而日照时数和平均风速的显著下降都发生在20世纪80年代初以来.黄土高原的气候可能出现了一些新趋势,给未来可持续发展带来了不确定性,需引起足够重视.  相似文献   

12.
基于汉江流域63个气象站点逐日降水数据,辅以超阈值抽样、极端降水集中度(EPCD)和集中期(EPCP)、Mann-Kendall趋势检验等分析方法,对1970-2015年汉江流域多尺度极端降水变化特征进行分析。结果表明:(1)在旬尺度上,汉江流域EPCD较高,呈现出“西高东低”空间特征;汉江EPCP多年均值为七月下旬,空间呈现出“东部早,西部迟”的分布特征,不同流域表现出不同的年代变化规律。(2)在月尺度上,汉江流域极端降水各月分布不均,主要集中在5-9月,同年10月至次年4月为极端降水少发期。(3)在季尺度上,汉江流域极端降水夏季占比50%以上,但近期全流域夏季极端降水比例下降,其中上游主要为春季占比增加,中下游为秋季占比增加,说明夏季是影响汉江极端降水非均匀变化的关键季节。(4)在影响因素上,当东亚季风和南亚II区季风偏强时,汉江流域夏季极端降水量整体减少;当东亚季风偏弱时,夏季极端降水增幅呈南北分异,而南亚II区季风偏弱时,极端降水增幅呈东西分异。  相似文献   

13.
徐自为  张智杰 《环境科学研究》2018,31(11):1909-1917
为全面认识干旱区不同土地利用类型时空变化对区域生态系统碳储量的影响,以地处塔克拉玛干沙漠边缘生态脆弱区的新疆尉犁县为研究对象,基于详细的土地利用变更调查数据(2010-2016年),利用ArcGIS平台和InVEST模型,分析生态系统碳储量对土地利用变化尤其是二级土地利用类型变化的响应.结果表明:①研究区内,无论是区域平均碳密度还是灌木林地、其他林地、其他草地等主要土地利用类型的碳密度均较低,而面积较少的有林地和天然牧草地碳密度相对较高,因此对这些土地利用类型应着重加强保护.②2010-2016年新疆尉犁县碳存储量净减少24.23×104 t,这主要是由于其他草地、其他园地和果园等土地利用类型被开垦为水浇地,或被建设用地、交通用地占用所导致,而同时研究区内有林地和水浇地面积增加带来了碳储量的提高.③从空间变化看,受不同区域土地利用变化方式的影响,碳储量变化特征也有显著差异,但总体上变化敏感区域集中在塔里木河周边县、乡镇及兵团所在地等人类活动聚集区,这些区域平均碳密度较高,土地利用变化也更为剧烈.④尽管由于开垦行为带来耕地面积增加,从而使得研究区耕地总碳储量增加242.77×104 t,但由于塔里木河沿岸碳密度较高的耕地被建设用地占用,新增耕地多来源于土壤碳储量较低的其他草地等土地利用类型,导致耕地平均碳密度有所下降.研究显示,建设用地占用耕地、林地、草地等地类是尉犁县碳储量减少的重要原因,而林业建设能够带来碳储量增加.因此建议:一方面,推进林、草地建设提高区域生态系统固碳能力;另一方面,重点保护塔里木河周边碳密度较高区域,严控耕地开垦或建设用地占用,同时加强耕地保护,防止通过补充碳密度较低的耕地来弥补碳密度较高区域耕地的流失.   相似文献   

14.
1961-2006年我国气候变化趋势与突变的区域差异   总被引:23,自引:3,他引:23  
尹云鹤  吴绍洪  陈刚 《自然资源学报》2009,24(12):2147-2157
基于FAO56 Penman-Monteith校正模型模拟结果,结合线性趋势法、Mann-Kendall非参数检验法和滑动T检验法,分析了我国1961-2006年温度和水分条件的变化趋势与突变特征。研究揭示出近几十年来中国及各地区平均温度呈显著上升趋势,且在20世纪80年代后期发生显著突变,突变在东北部较早,南部地区相对较晚。全国降水量略有减少趋势,没有检测到显著突变,西北干旱区的降水在20世纪80年代中期发生显著突变。全国潜在蒸散呈显著减少趋势,在20世纪80年代初发生显著突变,东部地区突变发生时间早于西部地区。全国干燥度呈显著的减少趋势,在20世纪70年代末发生了显著突变;亚热带、青藏高寒区和西北干旱区的干燥度减少趋势尤为显著,西北干旱区在1986年发生显著突变,湿润程度增加明显。  相似文献   

15.
基于1951~2014年中国北方及周边地区357个气象站点平均最低气温、平均气温和平均最高气温年(月)数据,采用M~K检验等方法,分析了中国北方地区3类气温突变和变暖停滞特征的时空变异性.结果表明:研究区3类气温整体突变年(1978~1999年、1981~2002年、1981~2005年)、分布广泛的普遍突变年(1988年、1989年、1997年)及范围(3a)均依次变晚.整体上,突变年随纬度降低变晚,东北突变早于西北和华北地区.变暖停滞集中于1998和2007年及其前后,3类气温亦依次变晚(1994~2007年、1995~2009年、1998~2010年),由黄河流域中段向其他方向越来越晚.突变至变暖停滞周期整体随纬度降低缩短(3~30a),突变越早周期越长.西北地区突变与变暖停滞前后各时段均值温差最大(2.4℃),温差在1℃左右站点分布最广泛.各时段升(降)温速率整体依次在0.01℃/10a、0.05℃/10a、-0.03℃/10a左右站点分布最广泛,突变后升温最快(0.02~0.16℃/10a),且西北地区对升温贡献最大,变暖停滞后东北地区对降温贡献最大,2时段按平均最低气温、平均最高气温、平均气温顺序升(降)温速率递减.3类气温波动程度减弱,整体随纬度降低.高纬度、高海拔和山地地区突变和变暖停滞较周边地区偏早或偏晚,特征值较大.整个北方地区3类气温突变、变暖停滞、突变与变暖停滞时间及各时段特征值各自具有自身一致性的普遍规律.  相似文献   

16.
基于2000~2020年MODIS NDVI遥感数据,辅以气象数据和土地利用数据,通过小波分析、Sen+Mann-Kendall趋势分析、Hurst指数、偏相关分析及残差分析法,以不同地形地貌为单元,对不同周期阶段下东北地区植被时空演变特征及其对气候变化和人类活动的响应机制进行深入解析.结果表明:时间上,21a间东北地区植被NDVI呈速率为0.0308/10a(P<0.001)的上升趋势,以16a第一主周期下10a左右的周期变化最为稳定;空间上,东北地区植被NDVI整体处于较高水平,但空间分异明显,呈“西南低东北高”的格局.各周期阶段均为NDVI改善面积大于退化面积且改善范围不断扩增.NDVI未来变化趋势主旋律为持续改善,占总面积的63.56%;响应机制上,东北地区植被NDVI受气候变化与人类活动共同影响.2000~2020年NDVI与气温、降水和相对湿度呈正相关,与日照时数呈负相关,其中降水对NDVI的影响作用最强,且随周期演替以降水为主导气候因子的面积显著递增.各周期阶段人类活动对NDVI变化均以正向促进为主,林业工程实施是植被状况改善的关键,而建设用地扩张是植被减少的主要原因.  相似文献   

17.
1961-2009年四川极端强降水变化趋势与周期性分析   总被引:7,自引:0,他引:7  
张顺谦  马振峰 《自然资源学报》2011,26(11):1918-1929
利用四川1961-2009年141个站点逐日降水资料和1998-2007年灾情资料,采用气候倾向率、Mann-Kendall检验、复Morlet小波、Gumbel分布、信息扩散等方法,分析了7个区域5个指数的变化趋势、突变特征和周期性特点,以及重现期降水极值和洪灾损失风险的区域差异,其主要结论是:川西南山地极端降水呈显著增多增强趋势,并在1980年代初发生了突变,盆地东北部和川西高原南部也有增多增强趋势,但不显著,盆地西北部、盆地南部和川西高原北部则有减少减弱趋势,盆地中部则表现出频数增多强度减弱的变化趋势;多数区域和多数指数都存在25 a左右的长周期和6~9 a的短周期,从25 a的长周期看,目前极端降水正处于增多增强的变化过程之中;用Gumbel分布拟合的日最大降水量,其极值区位于盆周山区和高原与盆地的过渡带,3个极值中心主要位于盆地西南部、西北部和东北部,50 a一遇的日雨量在230 mm以上;盆地大部50 a一遇的洪灾损失率在38%左右,盆地东北部可达45%,广元西南部可达60%。  相似文献   

18.
利用MODIS/NDVI数据、近18年来贵州省气象站点数据,辅以时间序列、变化趋势和空间动态变化分析等方法,研究贵州省植被覆盖的时空变化特征;探讨植被覆盖变化对气象因子在地域、变化速率和变化方向方面的时空响应规律。研究结果显示:(1)2000~2017年贵州省植被覆盖呈现显著增加的趋势,增速为0.004/a,夏季NDVI值最高,冬季增加趋势最大;空间上,贵州省植被覆盖格局呈现"南高北低、东高西低"的空间分布特征。在变化趋势上,贵州省植被覆盖呈改善和退化趋势的面积分别占贵州省总面积的94.97%和5.03%。(2)2000~2017年,贵州省气候变化特征是降雨量在年内分布不均,且主要分布在5月至8月;温度在各个季节变化趋势不明显,但是总体呈上升的趋势。气温和降水变化趋势大于零的面积分别占贵州省总面积的98.4%和60.46%,说明在全球暖湿化的大背景下,贵州省大部分地区亦呈温度升高、降水增加的态势。(3)贵州省NDVI与气温的相关性大于降水,但其对降水的滞后性却高于气温。其中,秋季植被受降水影响滞后性最强,其次是夏季。(4)不同气候要素对贵州省植被生长影响具有空间差异性,98.4%的地区NDVI与同期温度均达到正相关水平;NDVI与同期降水并未表现出良好的相关性,但82.63%的地区植被与前一年降水呈正相关水平。植被与降水呈负相关的地区,建设用地、裸地占更大比率,且人类活动在植被变化中的作用不容忽视。  相似文献   

19.
利用中国北方357个气象站1951—2014年的季(月)平均最低气温,平均气温和平均最高气温数据,应用Mann-Kendall检验等方法,分析了中国北方地区三类气温季节突变与变暖停滞年份时空变异性。结果表明:平均最低气温、平均气温和平均最高气温各季节整体随纬度降低突变和变暖停滞年份变晚,突变至变暖停滞周期缩短。东北春、冬季突变和变暖停滞整体最早(20世纪70年代至80年代、1993—2002年),华北次之,西北最晚(20世纪80年代至21世纪前10 a、1996—2010年);夏、秋季突变华北最早(20世纪70年代和90年代),东北次之,西北最晚(20世纪90年代至21世纪前10 a),变暖停滞年份地区差异较小。平均最高气温未突变和平均最低气温未停滞站点较多,均主要分布在山地、高纬度地区和华北平原南部,其周边区域突变及停滞年份相对偏晚。同类气温突变和变暖停滞年份整体上分别按冬(1981—1990年)、春、秋、夏季(1994—2008年)和冬(1995—2008年)、秋、夏、春季(1998—2010年)顺序依次变晚,冬→春→秋→夏季突变至变暖停滞周期依次缩短。春、夏和冬季均为平均最低气温整体突变最早(1972—1999、1987—1999、1971—2000年),平均气温次之,平均最高气温最晚(1975—2008、1994—2008、1972—2006年),秋季与之不同。春、夏季整体按平均最低气温(1994—2008、1997—2008年)、平均气温、平均最高气温(均为1997—2010年)停滞依次变晚,秋、冬季与之相反。各季节突变至变暖停滞周期整体按平均最低气温(9~18 a)、平均气温和平均最高气温(5~12 a)依次缩短。夏季三类气温均在华北南部(低纬度)突变最早,与研究区整体规律相悖,该地区大部分站点未停滞,亦与突变早停滞也早的整体规律不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号