首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气溶胶(aerosol)是分散在气体介质中,粒径大部分小于1μm(微米)的微粒,最大者也可以达到5μm。它具有胶体性质,对光线有散射作用。气溶胶在气体介质中不因重力作用而沉降。生物气溶胶主要是来自生物因素导致的气溶胶,它有别于工业来源的气溶胶。  相似文献   

2.
虹雨 《环境》2003,(7):30-30
气溶胶是分散在气体介质中,粒径大部分小于1μm(微米,1‰毫米)的微粒,最大者也可以达到5μm。它具有胶体性质,对光线有散射作用。气溶胶在气体介质中不因重力作用而沉降。生物气溶胶主要是来自生物因素导致的气溶胶,它有别于工业来源的气溶胶。  相似文献   

3.
北京雾霾天气生物气溶胶浓度和粒径特征   总被引:11,自引:6,他引:5  
高敏  仇天雷  贾瑞志  韩梅琳  宋渊  王旭明 《环境科学》2014,35(12):4415-4421
近年来北京雾霾天气频发,空气颗粒物聚集是导致雾霾天气发生的主要原因之一.作为一种重要的空气颗粒物,生物气溶胶对人体健康存在危害.本研究调查了雾霾天气时,生物气溶胶浓度和粒径分布规律;对其同空气质量指数PM2.5(AQI),环境温度和湿度间的Spearman’s相关性进行了研究;分析了冬夏两季重度雾霾天气时,生物气溶胶粒径分布规律.结果表明,生物气溶胶浓度与PM2.5(AQI)呈负相关,与环境温度呈正相关.环境湿度与细菌气溶胶浓度呈负相关而与真菌气溶胶浓度呈正相关.在冬季,最大浓度细菌和真菌气溶胶分别在4.5~7.0μm和2.1~3.3μm粒径范围内检测到,而夏季最高浓度细菌和真菌气溶胶均分布在3.3~4.5μm范围内.本研究结果将为不同雾霾天气下,评价生物气溶胶对人类健康造成的危害提供基础数据.  相似文献   

4.
杨唐  韩云平  李琳  刘俊新 《环境科学》2019,40(4):1680-1687
粒径分布和微生物种群结构是雾-霾天气溶胶与人体健康密切相关的典型特征.采用安德森六级采样器在人体平均呼吸高度(近地面1.5 m)处对北京某地雾-霾天及晴天分别进行气溶胶样品采集,从不同粒径气溶胶中的可培养细菌、真菌浓度及种群结构角度展开研究.结果表明,雾-霾天不同粒径气溶胶中可培养微生物浓度呈现不均匀分布状态;不同粒径气溶胶中微生物浓度、种群结构差异性均明显高于晴天.雾-霾天条件下,在粒径大于3.3 μm的气溶胶中,芽孢杆菌(Bacillus sp.)占据优势地位,在粒径小于3.3 μm的气溶胶中,芽孢杆菌(Bacillus sp.)和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)占优势地位.而当雾-霾过后,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)在所有粒径的生物气溶胶中均占优势地位.雾-霾天条件下,在粒径大于3.3 μm的气溶胶中共检出5种优势真菌,分别是链格孢菌(Alternaria sp.)、意大利青霉(Penicillium italicum)、蓝状菌(Talaromyces stollii)、枝孢菌(Cladosporium sp.)和Davidiella sp.;而当雾-霾过后,仅链格孢菌(Alternaria sp.)被检测为优势菌.无论雾-霾天还是晴天,在粒径小于3.3 μm的气溶胶中真菌均主要以意大利青霉(Penicillium italicum)和蓝状菌(Talaromyces stollii)为主.在人体平均呼吸高度处,雾-霾天与晴天不同粒径气溶胶中微生物浓度和种群结构存在明显差异.雾-霾天人体平均呼吸高度处微生物浓度高、且种群结构较为复杂,其微生物特性对人体健康的潜在风险不容忽视.  相似文献   

5.
下垫面的地表矿物质颗粒物是大气气溶胶的源和汇,对生物地球化学循环、环境状况和人体健康产生影响。下垫面地表矿物质颗粒物的粒度分布是表征颗粒行为的重要参数,颗粒物的物理性质、化学性质和环境学性质等都与粒径有关。为探究人为下垫面(城市铺装道路、农村土路和农田等)和自然下垫面(沙漠和戈壁)地表矿物质颗粒物的粒径分布,并分析其影响因素,对城市铺装道路、农村土路、裸露农田、沙漠和戈壁下垫面的地表矿物质颗粒物进行粒度研究。结果表明:从沉积物中值粒径来看,城市铺装道路表现为佛山市南海区(254.9μm)>杭州市桐庐县(247.5μm)>北京市(201.3μm)>南平市延平区(178.7μm)>兰州市(65.5μm);赣州市湖江镇农村土路为131.3μm;兰州市榆中县裸露农田为21.1μm;沙漠和戈壁表现为腾格里沙漠(272.7μm)>塔克拉玛干沙漠(121.9μm)。总体来说,地表矿物质颗粒物的粒度分布与人类活动、地理位置、风速和季节等因素密切相关,人类活动对粒度分布的影响因人类活动的复杂而难以明确,风速不同将裹挟不同粒径颗粒物,不同季节风速与风向不同,不同地理位置人类活...  相似文献   

6.
生物气溶胶对人体健康的潜在危害不容忽视,但霾污染过程中生物气溶胶变化规律及其影响因素仍不明确.本文利用六级生物气溶胶采样器及大气颗粒物采样器开展了一次典型霾污染过程样品的采集,通过恒温培养测定可培养细菌和真菌浓度,采用4’,6-二脒基-2-苯基吲哚(4’,6-diamidino-2-phenylindole,DAPI)和LIVE/DEAD BacLightTM试剂染色-荧光显微镜计数方法测定总微生物及死/活细菌浓度,并通过其与颗粒物中水溶性离子、金属元素、气象因素及大气氧化性的关系探讨了生物气溶胶分布的影响因素.结果表明,霾污染过程中,可培养细菌和总微生物在轻度污染时浓度最低,随着污染加重其浓度逐渐升高.可培养真菌浓度在霾发生初期大幅增加,平均浓度为污染发生前2.5倍.活菌和死菌浓度在霾过程均呈现先急剧下降后逐渐上升的趋势.可培养细菌粒径分布在霾污染过程中呈现偏态分布(0.65~1.1μm,除中度污染外)和双峰分布(> 7.0μm和1.1~2.1μm,中度污染),可培养真菌粒径在整个污染过程中呈单峰分布,峰值分别为0.65~1.1μm(污染发生前、中度污染和污染结束)和1.1~2...  相似文献   

7.
太原市冬季大气气溶胶的源识别   总被引:1,自引:1,他引:0       下载免费PDF全文
用可对气溶胶粒径切割的采样器采集了太原市中心1985年冬季的大气气溶胶样品。以X射线荧光法分析出的化学元素作为变量,对数据作了因子分析、标示元素多元回归处理。结果指出,粒径小于2.5μm的细粒子中约有76.5%来自燃煤排放出的SO2转化成硫酸盐,约13.5%来自建筑石料高温烧结;2.5—15μm之间的粗粒子中约有82.8%来自燃煤排放出的煤飞灰;在TSP范围内,混合尘与燃煤两类源的贡献率分别是41.6%和45.2%。源识别结果表明太原市冬季气溶胶主要来自煤炭燃烧,而石油化工、金属冶炼及汽车尾气等源的贡献很小。工业粉尘、基建扬尘、路面及自然风沙等类型的源,主要在大粒径范围内(TSP)才有贡献。 就燃煤源而论,工业用煤对气溶胶(飘尘部分)污染的贡献约是居民用煤的11.8倍,因此,研究解决工业燃煤造成的大气污染是一个主要问题。"   相似文献   

8.
一、大气污染对人体健康的影响100μm以下的颗粒物统称为总悬浮微粒,粒径大于10μm的颗粒叫做降尘,粒径小于10μm的颗粒叫飘尘。飘尘中很大一部分此细菌还小,人的眼睛观察不到,它可以长时间地大气污染主要来源于人类的生产活动。特别是大量消耗矿物燃料(煤、石油),燃料燃烧排放的烟气约占全部空气污染物的70%。在矿区95%燃料是自产煤,所以矿区的大气污染对人体影响是严重的,主要表现是:1.颗粒物对人体健康的危害我国现行的环境标准规定:凡颗径在  相似文献   

9.
马丽新  齐虹  孙霞忠 《环境科学学报》2020,40(10):3549-3558
近年来气溶胶污染被社会各界密切关注.大气气溶胶的粒径分布和污染物组成特征研究是探究大气气溶胶污染成因的基础,同时也是准确评估人体暴露于气溶胶污染导致的健康风险的关键.多级采样器可分粒径采集大气气溶胶,通过模拟人体呼吸系统进而准确量化大气气溶胶组分被吸入后在人体的沉积部位和沉积量,从而被应用至大气气溶胶粒径分布特征和人体健康风险评估的研究中.本文介绍了大气气溶胶粒径分级方法,探讨了应用多级采样器在气溶胶粒径分布研究中存在的主要问题及解决方案,并综述了大气气溶胶粒径分布特征和人体呼吸系统暴露评估的研究进展,最后结合当前的研究现状对大气气溶胶在粒径分级和人体健康风险研究领域的未来发展方向进行了展望.  相似文献   

10.
生物气溶胶是悬浮在大气中直接来源于生物有机体的粒子,基于生物材料存在荧光的特性利用紫外诱导荧光技术对其监测是近年来的热门研究方法。该研究利用双波段荧光生物气溶胶(WIBS)分别以深圳南澳和韶关南岭监测点作为海陆源背景点进行了大气在线观测,得到了海陆源生物气溶胶特征。深圳南澳3个通道FL1、FL2和FL3的荧光粒子数浓度是0.067、0.067和0.057 cm~(-3),韶关南岭3个通道FL1、FL2和FL3的荧光粒子数浓度是0.012、0.032和0.016 cm~(-3)。进一步根据不同通道荧光阈值将粒子分为7种类型,深圳南澳总荧光气溶胶浓度是0.106 cm~(-3),其中主要是Type ABC和Type A。韶关南岭总荧光粒子浓度为0.053 cm~(-3),其中主要是Type B和Type AC。深圳南澳生物气溶胶的粒径分布在2μm分布显著,韶关南岭点粒径分布主要集中在1~3μm。利用黑碳、乙腈和m/z44与不同类型荧光粒子的相关分析,得到深圳南澳和韶关南岭受到非生物性成分的影响较小,能较好地代表海陆源生物气溶胶。进一步比较海陆源和深圳15 a夏季荧光粒子的粒径特征,通过PMF模型运算,得到海洋源生物气溶胶对深圳夏季生物气溶胶的贡献有0.020 cm~(-3),占到总荧光粒子的2.9%。  相似文献   

11.
气体停留时间是影响生物滤池去除恶臭和微生物气溶胶的重要因素之一。采用小试规模的生物滤池研究了气体停留时间对城市污水处理工艺恶臭和微生物气溶胶去除特性的影响。研究结果表明:随着气体停留时间的增加,硫化氢和氨的去除率随之增加,而异养细菌和真菌的去除率降低,低的气体停留时间利于微生物气溶胶的去除,保证硫化氢、氨和微生物气溶胶均能同时高效去除的气体停留时间为40 s。随着气体停留时间的增加,生物滤池出气中分布于stage1、stage2和stage3的大粒径微生物粒子所占比例减小,而分布于stage5和stage6的小粒径微生物粒子所占比例增加。在低的气体停留时间下,生物滤池出气微生物气溶胶潜在的健康风险更大。  相似文献   

12.
为探究南京地区雾过程对气溶胶粒子化学组成和尺度分布的影响,在2017年冬季的雾观测中平行收集了3级分档雾水和分粒径气溶胶样品,并对雾微物理量与气溶胶谱分布、3级分档雾水与雾前、雾中、雾后分粒径气溶胶化学组成对比分析。结果表明,2017年冬季南京第1次雾过程的雾滴液态水含量随粒径分布为不对称“V”型,最低值位于7μm处,第2次雾过程的雾滴液态水含量随粒径分布为3峰型,峰值分别位于5,15,21.5μm处。在雾形成、发展阶段,粒径<0.33μm的气溶胶质量浓度降低,粒径0.38μm气溶胶质量浓度升高,雾成熟阶段,气溶胶粒子质量浓度在全粒径段均达到最低,粒径0.38μm的气溶胶质量浓度大幅降低,与雾前相比,雾后气溶胶质量浓度峰值向大粒径方向移动。雾前,气溶胶水溶性离子组分富集在粒径<0.43μm的小粒子中,随着雾过程进行,成核作用和吸湿增长使得水溶性离子向较大粒径段富集。雾中新生成的气溶胶随着雾滴的蒸发被释放,导致雾后NO3-、SO42-和NH4+浓度升高。较小粒径的气溶胶中和率更高,雾形成初期的新生雾滴酸性较强,随着雾过程的进行逐渐中和,雾水pH值逐渐升高。  相似文献   

13.
青岛市连续天气过程中不同气溶胶浓度特征对比分析   总被引:3,自引:2,他引:1  
利用青岛市沙尘暴监测站GRIMM180颗粒物监测仪采集到的质量浓度和数浓度数据,结合2008年5月27~28日天气系统演变进行气溶胶定性分类,对海雾气溶胶、清洁气溶胶、浮尘气溶胶的浓度进行对比分析.结果表明,①清洁气溶胶、海雾气溶胶、浮尘气溶胶的总质量浓度有明显差异;②海雾气溶胶以1~2.5μm粒子的滞留最明显,清洁气溶胶中1μm的粒子贡献率最大,浮尘气溶胶则以2.5~10μm的颗粒物级数增加最具代表性,不同气溶胶相应大小粒子的质量浓度贡献率之比明显不同;③降水系统对0.6μm较大的粒子有明显的清除作用,对0.6μm的数浓度有增大作用;④1μm尤其是0.6μm的粒子处于天气系统前部到达潮湿空气时有特殊的活化现象;⑤不同粒径尺度的粒子数浓度随气溶胶性质的转变呈现不同的模态.  相似文献   

14.
降雨对不同粒径气溶胶粒子碰撞清除能力   总被引:6,自引:3,他引:3  
董群  赵普生  陈一娜 《环境科学》2016,37(10):3686-3692
利用与惯性碰撞紧密相关的斯托克斯数Stk计算公式,结合海淀宝联大气成分站和海淀自动观测站2012年10月~2014年10月两年实测的逐时PM_(2.5)浓度数据和对应时刻的气象要素数据,并挑选典型降水过程分析降水对不同粒径气溶胶的碰撞清除作用.惯性碰撞是降水对气溶胶的最主要清除方式,斯托克斯数Stk的计算结果显示,降水对粒径小于2μm的气溶胶的直接碰撞清除作用很小,对粒径大于2μm的粗粒子的清除作用相对较大;实际观测数据统计分析表明,PM_(2.5)浓度明显减少的降水过程及降水时次很少,而43.2%的降水时次PM_(2.5)浓度有所升高;通过对典型降水过程气溶胶粒径分布数据分析表明,降水对爱根核模态(0.1μm)和粗模态气溶胶(1.0μm)有明显的清除作用,但对积聚模态清除作用不明显,由于PM_(2.5)的质量浓度主要分布在积聚模态,因此,降水对环境中PM_(2.5)的碰撞清除作用很弱.  相似文献   

15.
沙尘天气对生物气溶胶中总微生物浓度及粒径分布的影响   总被引:5,自引:4,他引:1  
为了解沙尘对生物气溶胶中微生物的影响,于2015年3~4月间分别在兰州和青岛沙尘期间运用分级生物气溶胶采样器连续采集了生物气溶胶样品,并利用DAPI染色-荧光显微镜计数方法测定了总微生物浓度.结果表明,沙尘发生时生物气溶胶中总微生物浓度显著增加(P0.05).兰州和青岛总微生物浓度晴天背景均值分别为5.61×10~5cells·m~(-3)和2.08×10~5cells·m~(-3),沙尘时平均浓度分别是晴天的14.8倍和6.42倍.晴天时兰州和青岛两地样品微生物粒径分布均呈双峰分布,最高峰值均出现在7.0μm的粒径上,最低值均出现在4.7~7.0μm的粒径上,浓度次高峰值分别出现在3.3~4.7μm的粒径上和1.1~2.1μm的粒径上.沙尘时粒径分布均发生明显变化,兰州仍呈现双峰分布,但其中一个峰值从7.0μm移动到1.1~2.1μm;而青岛粒径由双峰分布变为粗粒径偏态分布.兰州和青岛沙尘前微生物负荷的背景值分别是2 224 cells·μg~(-1)和1 550 cells·μg~(-1),而沙尘发生时,颗粒物的微生物负荷均大幅增加,最高值分别达26 442 cells·μg~(-1)和10 250 cells·μg~(-1),这说明沙尘天气发生时,微生物浓度的增加不仅仅是因为空气中颗粒物的增加,而是因为长距离传输的沙尘颗粒携带有大量外源微生物.  相似文献   

16.
气溶胶是指悬浮在气体中的固体和(或)液体微粒与气体载体共同组成的多相体系。相应地,大气气溶胶是指悬浮在大气中粒径大小在0.01~100微米之间的固态和液态微粒共同组成的多相体系,主要是包括六大类7种粒子:沙尘气溶胶、碳气溶胶(黑碳和有机碳气溶胶)、硫酸盐气溶胶、硝酸盐气溶胶、铵盐气溶胶和海盐气溶胶。大气气溶胶的自然来源有火山喷发的烟尘、被风吹起的土壤微粒、海水飞溅扬入大气后而被蒸发的盐粒、细菌、微生物、植物的孢子花粉、流星燃烧所产生的细小微粒和宇宙尘埃等;人为源的气溶胶主要包括煤、油及其他矿物燃料的燃烧物质以及机动车产生的废气排放至空气中的大量烟粒等。大气气溶胶粒子的寿命通常只有约一周,  相似文献   

17.
生活垃圾填埋场细菌气溶胶粒径分布及种群特征   总被引:6,自引:2,他引:4  
卫生填埋是一种常用的生活垃圾处置方法.在倾倒、堆放、推平和压实等垃圾填埋过程中,有大量带有致病菌的微生物气溶胶逸散,污染空气,危害人体健康.本研究在华北地区某生活垃圾卫生填埋场设置采样点,采集空气中的细菌气溶胶,解析细菌气溶胶的浓度、粒径分布和种群特征,研究空气温度、相对湿度以及风速对细菌气溶胶逸散的影响.结果表明,作业区和覆盖区空气细菌浓度分别为(5 437±572) CFU·m~(-3)和(2 707±396) CFU·m~(-3).垃圾渗滤液处理区空气中的细菌气溶胶浓度最高,平均为9 460 CFU·m~(-3).细菌气溶胶的浓度呈现明显的季节变化,夏季浓度明显高于其他季节.冗余分析(RDA)显示,气象参数如相对湿度、温度和风速,显著影响细菌气溶胶在空气中的数量.作业区和覆盖区空气细菌粒径分布高峰分别在2. 1~4. 7μm和0. 65~2. 1μm.渗滤液处理逸散的细菌气溶胶大部分大于4. 7μm. Moraxellaceae,Bacillus aerius,Arcobacter以及Aeromonas是垃圾填埋场细菌气溶胶中检出潜在或机会致病菌.  相似文献   

18.
气溶胶在采样管中的沉积特性研究   总被引:2,自引:1,他引:1  
为了正确评价气溶胶在采样管道中的粒子沉积损失,文章通过实验研究确定了采样管道中粒子沉积与有关参数之间的关系。气溶胶粒子粒径为0.04~8.30μm、采样流量为10~30 L/min、采样管道长度为10~35 m。结果表明,当气溶胶粒径约小于1μm时,穿透率随粒径增大而增加,当气溶胶粒径约大于1μm时;穿透率随粒径增加而减小;气溶胶粒子的穿透率随流速增大而增加;气溶胶粒子的穿透率随采样管长增加而减小。  相似文献   

19.
南京市城区气溶胶粒度分布特征   总被引:7,自引:0,他引:7  
以九段串级式撞击采样器对南京市气溶胶进行采样测定。经统计分析发现,气溶胶呈双峰分布,粒度分布规律明显,峰值粒径在0.37μm-0.65μm和4.3μm-5.6μm之间,气溶胶浓度季节变化显著,秋季>夏秋,秋季颗粒物中细粒子质量百分比较夏季的多,两季质量中位位直径分别为6.5μm,4,4μm,说明与季节变化密切相关。  相似文献   

20.
莫雯 《环境导报》2003,(2):15-15
汽车尾气排放的主要污染物为一氧化碳(CO)、氮氧化物(NOX)、碳氢化合物(HC)、铅(Pb)等。一氧化碳:一氧化碳和人体红血球中的血红蛋白有很强的亲合力,它的亲合力比氧强几十倍,亲合后生成碳氧血红蛋白,从而削弱血液向各组织输送氧的功能,造成感觉、反应、理解、记忆力等方面的机能障碍,重者危害血液循环系统,导致生命危险。氮氧化物:氮氧化物主要是指NO、NO2,都是对人体有害的气体,特别是对呼吸系统有危害。在NO2浓度为9.4mg/m2的空气中暴露10分钟,即可造成呼吸系统失调。碳氢化合物:目前还不清楚它对人体…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号