首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil samples from column studies using five soil types and from a field site were analyzed to assess the ability of soil aquifer treatment to sustain removal of organic carbon. The soil types used in the column studies were chosen to represent a wide range of soil properties that might be used for soil aquifer treatment. Soil samples were analyzed for total organic matter, and a subset of samples was sequentially extracted to determine the effects of soil aquifer treatment. For both column studies and the field site, no accumulation of organic matter was observed below a depth of 8 cm. Near the surface, biological activity at the soil-water interface resulted in an accumulation of biomass and associated organic matter. For the column studies, the accumulation of organic matter in the top 8 cm of soil was <20% of the total organic matter applied to the columns. Soils at depths greater than 8 cm had total organic matter levels less than the original soils before soil aquifer treatment. Significant changes in extractable iron and manganese oxides were observed at the field site, which had been in operation for >10 yr with extended periods of low redox conditions. However, these changes had no apparent effect on the removal of organic carbon in the system. This study provides evidence that soil aquifer treatment can remove organic carbon without accumulation from adsorption that might eventually lead to breakthrough.  相似文献   

2.
Land application of biosolids is a beneficial-use practice whose ecological effects depend in part on hydrological effects. Biosolids were surface-applied to square 0.5-m2 plots at four rates (0, 7, 34, and 90 dry Mg ha(-1)) on each of three soil-cover combinations in Chihuahuan Desert grassland and shrubland. Infiltration and erosion were measured during two seasons for three biosolids post-application ages. Infiltration was measured during eight periods of a 30-min simulated rain. Biosolids application affected infiltration rate, cumulative infiltration, and erosion. Infiltration increased with increasing biosolids application rate. Application of biosolids at 90 dry Mg ha(-1) increased steady-state infiltration rate by 1.9 to 7.9 cm h(-1). Most of the measured differences in runoff among biosolids application rates were too large to be the result of interception losses and/or increased hydraulic gradient due to increased roughness. Soil erosion was reduced by the application of biosolids; however, the extent of reduction in erosion depended on the initial erodibility of the site. Typically, the greatest marginal reductions in erosion were achieved at the lower biosolids application rates (7 and 34 dry Mg ha(-1)); the difference in erosion between 34 and 90 dry Mg ha(-1) biosolids application rates was not significant. Surface application of biosolids has important hydrological consequences on runoff and soil erosion in desert grasslands that depend on the rate of biosolids applied, and the site and biosolids characteristics.  相似文献   

3.
Regional patterns of soil organic carbon stocks in China   总被引:8,自引:0,他引:8  
Soil organic carbon (SOC) is of great importance in the global carbon cycle. Distribution patterns of SOC in various regions of China constitute a nation-wide baseline for studies on soil carbon changes. This paper presents an integrated and multi-level study on SOC stock patterns of China, and presents baseline SOC stock estimates by great administrative regions, river watersheds, soil type regions and ecosystem. The assignment is done by means of a recently completed 1: 1,000,000 scale soil database of China, which is the most detailed and reliable one in China at the present time. SOC densities of 7292 soil profiles collected across China in the middle of the 1980s were calculated and then linked to corresponding polygons in a digital soil map, resulting in a SOC Density Map of China on a 1: 1,000,000 scale, and a 1 km x 1 km grid map. Corresponding maps of administrative regions, river watersheds, soil types (ST), and ecosystems in China were also prepared with an identical resolution and coordinate control points, allowing GIS analyses. Results show that soils in China cover an area of 9.281 x 10(6)km(2) in total, with a total SOC stock of 89.14 Pg (1 Pg=10(15)g) and a mean SOC density of 96.0 t C/ha. Confidence limits of the SOC stock and density in China are estimated as [89.23 Pg, 89.08 Pg] and [96.143 t C/ha, 95.981 t C/ha] at 95% probability, respectively. The largest total SOC stock (23.60 Pg) is found in South-west China while the highest mean SOC density (181.9 t C/ha) is found in north-east China. The total SOC stock and the mean SOC density in the Yangtze river watershed are 21.05 Pg and 120.0 t C/ha, respectively, while the corresponding figures in the Yellow river watershed are 8.46 Pg and 104.3 t C/ha, respectively. The highest total SOC stocks are found in Inceptisols (34.39 Pg) with SOC density of 102.8 t C/ha. The lowest and highest mean SOC densities are found on Entisols (28.1 t C/ha), and on Histosols (994.728.1 t C/ha), respectively. Finally, the total SOC stock in shrub and forest ecosystem classes are 25.55 and 21.50 Pg, respectively; the highest mean SOC density (209.9 t C/ha) was recorded in the wetland ecosystem class and the lowest (29.0 t C/ha) in the desert ecosystem class. Among five forest ecosystem types, Evergreen conifer forest stores the highest SOC stock (6.81 Pg), and Deciduous conifer forest shows the highest SOC density (225.9 t C/ha). Figures of SOC stocks stratified by Administrative regions, river watersheds, soil types and ecosystem types presented in the study may constitute national-wide baseline for studies of SOC stock changes in various regions in the future.  相似文献   

4.
To evaluate the effects of dissolved organic carbon on sorption and mobility of the insecticide imidacloprid [1-(6-chloro-3-pyridinyl) methyl-N-nitro-2-imidazolidinimine] in soils, adsorption and column experiments were performed by using a typical calcareous soil from southeastern Spain and two different types of dissolved organic carbon, that is, dissolved organic carbon extracts from a commercial peat (DOC-PE) and high-purity tannic acid (DOC-TA). The experiments were carried out from a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results obtained from the sorption experiments show that the presence of both DOC-PE and DOC-TA, over a concentration range of 15 to 100 mg L(-1), produces in all cases a decreasing amount of imidacloprid adsorbed in the soil studied. From the column experiments the retardation coefficients (RC) were calculated for imidacloprid by using either 0.01 M CaCl2 aqueous solution (RC = 2.10), 0.01 M CaCl2 DOC-PE solution (RC = 1.65), or 0.01 M CaCl2 DOC-TA solution (RC = 1.87). The results indicate that mobility of imidacloprid is increased 21.4 and 11.0% in the presence of DOC-PE and DOC-TA solutions, respectively. Dissolved organic carbon reduces imidacloprid sorption by competing with the pesticide molecules for sorption sites on the soil surface, allowing enhanced leaching of imidacloprid and potentially increasing ground water contamination.  相似文献   

5.
This study investigated the effects of grassland conversion to croplands on soil organic carbon (SOC) in a typical grassland-dominated basin of the Inner Mongolia using direct field samplings. The results indicated that SOC contents decreased usually with increasing soil depth, with significant differences between the upper horizons (0-30cm) and the underlying horizons (30-100cm). Also, SOC densities decreased with an increase in the depth of soils. Average SOC densities in the upper horizons were 2.6-3.7 and 6.0-8.3kgCm(-2) for desert grassland-cropland sites (sites 1 and 2) and meadow-cropland sites (sites 3 and 4), respectively, with significant differences between grasslands and croplands (P<0.05). However, the SOC densities in the underlying horizons did not significantly differ between the land uses. The SOC densities up to 100cm depth were much higher in the meadow-cropland sites than in the desert grassland-cropland sites, reaching approximately 16 and 6kgCm(-2), respectively. The SOC: total nitrogen (TN) ratios were approximately 10, with no significant difference among the soil horizons of grasslands and croplands. The conversion of grasslands to croplands induced a slight loss of SOC, with a range of from -4% to 22% for the 0-100cm soil depth over about a 35-year period, in the temperate Inner Mongolia.  相似文献   

6.
EPIC modeling of soil organic carbon sequestration in croplands of Iowa   总被引:1,自引:0,他引:1  
Depending on management, soil organic carbon (SOC) is a potential source or sink for atmospheric CO(2). We used the EPIC model to study impacts of soil and crop management on SOC in corn (Zea mays L.) and soybean (Glycine max L. Merr.) croplands of Iowa. The National Agricultural Statistics Service crops classification maps were used to identify corn-soybean areas. Soil properties were obtained from a combination of SSURGO and STATSGO databases. Daily weather variables were obtained from first order meteorological stations in Iowa and neighboring states. Data on crop management, fertilizer application and tillage were obtained from publicly available databases maintained by the NRCS, USDA-Economic Research Service (ERS), and Conservation Technology Information Center. The EPIC model accurately simulated state averages of crop yields during 1970-2005 (R(2) = 0.87). Simulated SOC explained 75% of the variation in measured SOC. With current trends in conservation tillage adoption, total stock of SOC (0-20 cm) is predicted to reach 506 Tg by 2019, representing an increase of 28 Tg with respect to 1980. In contrast, when the whole soil profile was considered, EPIC estimated a decrease of SOC stocks with time, from 1835 Tg in 1980 to 1771 Tg in 2019. Hence, soil depth considered for calculations is an important factor that needs further investigation. Soil organic C sequestration rates (0-20 cm) were estimated at 0.50 to 0.63 Mg ha(-1) yr(-1) depending on climate and soil conditions. Overall, combining land use maps with EPIC proved valid for predicting impacts of management practices on SOC. However, more data on spatial and temporal variation in SOC are needed to improve model calibration and validation.  相似文献   

7.
Certain organic C moieties of soil origin in drinking source waters of Sacramento-San Joaquin Delta (Delta) can react with chlorine to form trihalomethanes (THMs) during the disinfection process. Isolation and characterization of them and quantitation of their THM formation potential (THMFP) is necessary for developing effective strategies to reduce their influxes in Delta waters and for removing them during drinking water treatment. In this study, organic C from two Delta soils was extracted using deionized H(2)O and four Na- or Ca-based electrolytes of varying electrical conductivity values. Extracts were filtered into particulate, colloidal, fine colloidal, and soluble organic C for quantitation and THMFP determination. Results suggested that <1.5% of soil organic C was electrolyte-extractable. The soluble organic C fraction from both soils dominated in quantity and THMFP. Electrolyte effects were cation dependent. Sodium-based electrolytes at either conductivity level did not significantly decrease extractable organic C (EOC) or THMFP compared with deionized H(2)O. In contrast, Ca-based electrolytes reduced EOC and THMFP by >50% even at 1 dS m(-1). Further increase in Ca concentration did not significantly decrease EOC or THMFP. Most reduction in EOC and THMFP by Ca-based electrolytes occurred with the fractions other than the soluble organic C. Results suggested that under natural soil leaching and runoff conditions, the majority of THMFP is associated with organic C of <0.025 mum in diameter. Further molecular characterization of the fractions with high THMFP may help understand the nature of chlorine-reactive organic C from Delta soils.  相似文献   

8.
Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment.  相似文献   

9.
Water extraction methods are widely used to extract phosphorus (P) from soils for both agronomic and environmental purposes. Both the presence of soil colloids in soil water filtrates, and the contribution of colloidal P to the molybdate-reactive phosphorus (MRP) concentration measured in these filtrates, are well documented. However, relatively little attention has been given to the direct disturbance by colloids of MRP measurement. The objective of this paper is to show this influence found for water extracts with a soil to solution ratio of 1:60 (v/v) (P(w)), obtained from a heavy clay soil in the Netherlands. Colloidal particles, which passed a 0.45-mum filter, caused a large overestimation of MRP. The low ionic strength of the P(w) filtrates (on average 0.64 mmol(c) L(-1)) probably caused soil dispersion and increased detachment of colloids from soil during extraction. After NaCl addition, followed by 0.45-mum filtration, MRP was on average 93% lower. This can be ascribed to flocculation of colloids and removal by filtration. A low ionic strength can thus lead to the direct disturbance by colloidal particles of MRP measurement in waters from soils sensitive to release of colloids.  相似文献   

10.
The integrated terrestrial ecosystem C-budget model (InTEC) developed by Chen and co-workers has been used successfully to predict carbon dynamics of forests in Canada. It was tested here for forest soil organic carbon (SOC) density of China's northern temperate zone and southern subtropical zone. The results show that the simulated SOC density is highly correlated and in broad agreement with observations in Liping and in Changbaishan, representing the southern subtropical zone and the northern temperate zone in China, respectively. SOC density ranged from 2.2 to 11.2 kg/m(2) in Liping and from 3.4 to 14.8 kg/m(2) in Changbaishan. The correlation coefficients (r(2)) are 0.63 (N=16) and 0.76 (N=14) between the simulated and measured data in Liping and Changbaishan, respectively. The SOC densities under different vegetation types in Liping decrease in the order of mixed forest, broadleaf forest, Chinese fir, couch grass, and Chinese redpine, and in Changbaishan in the order of mixed forest, silver fir, larch forest, and birch forest.  相似文献   

11.
A well-drained soil in N-fertilized dairy pasture was amended with particulate organic carbon (POC), either sawdust or coarse woody mulch, and sampled every 4 wk for a year to test the hypothesis that the addition of POC would increase denitrification activity by increasing the number of microsites where denitrification occurred. Overall mean denitrifying enzyme activity (DEA), on a gravimetric basis, was 100% greater for the woody mulch treatment and 50% greater for the sawdust treatment compared with controls, indicating the denitrifying potential of the soil was enhanced. Despite differences in DEA, no difference in denitrification rate, as measured by the acetylene block technique, was detected among treatments, with an average annual N loss of ~22 kg N ha yr Soil water content overall was driving denitrification in this well-drained soil as regression of the natural log of volumetric soil water content (VWC) against denitrification rate was highly significant ( = 0.74, < 0.001). Addition of the amendments, however, had significant effects on the availability of both C and N. An additional 20 to 40 kg N ha was stored in POC-amended treatments as a result of increases in the microbial biomass. Basal respiration, as a measure of available C, was 400% greater than controls in the sawdust treatment and 250% greater than controls in the mulch. Net N mineralization, however, was significantly lower in the sawdust treatment, resulting in significantly lower nitrate N levels than in the control. We attribute the lack of measured response in denitrification rate to the high temporal variability in denitrification and suggest that diffusion of nitrate may ultimately have limited denitrification in the amended treatments. Our data indicate that manipulation of denitrification by addition of POC may be possible, particularly when nitrate levels are high, but quantifying differences in the rate of denitrification is difficult because of the temporal nature of the process (particularly the complex interaction of N availability and soil water content).  相似文献   

12.
Anaerobic digestion of source-separated municipal organic waste is considered feasible in Denmark. The limited hydraulic retention in the biogas reactor (typically 15 d) does not allow full degradation of the organic waste. Storage of anaerobically digested municipal organic waste can therefore be a source of methane (CH4) emission that may contribute significantly to the potential global warming impact from the waste treatment system. This study provides a model for quantifying the CH4 production from stored co-digested municipal organic waste and estimates the production under typical Danish climatic conditions, thus quantifying the potential global warming impact from storage of the digested municipal organic waste before its use on agricultural land. Laboratory batch tests on CH4 production as well as temperature measurements in eight full-scale storage tanks provided data for developing a model estimating the CH4 production in storage tanks containing digested municipal organic waste. The temperatures measured in separate storage tanks on farms receiving digested slurry were linearly correlated with air temperature. In storage tanks receiving slurry directly from biogas reactors, significantly higher temperatures were measured due to the high temperatures of the effluent from the reactor. Storage tanks on Danish farms are typically emptied in April and have a constant inflow of digested material. During the warmest months the content of digested material is therefore low, which limits the yearly CH4 production from storage.  相似文献   

13.
Restoration of degraded lands could be a way to reverse soil degradation and desertification in semiarid areas and mitigate greenhouse gases (GHG). Our objective was to evaluate the long-term effects of a single addition of organic refuse on soil physical properties and measure its carbon sequestration potential. In 1988, a set of five plots (87 m(2) each) was established in an open desert-like scrubland (2-4% cover) in Murcia, Spain, to which urban solid refuse (USR) was added in a single treatment at different rates. Soil properties were monitored over a 5-yr period. Sixteen years after the addition, three of the plots were monitored again (P0: control, P1: 13 kg m(-2), P2: 26 kg m(-2) of USR added) to assess the lasting effect of the organic addition on the soil organic carbon (SOC) pools and on the physical characteristics of the soil. The SOC content was higher in P2 (16.4 g kg(-1)) and in P1 (11.8 g kg(-1)) than in P0 (7.9 g kg(-1)). Likewise, aerial biomass increased from 0.18 kg m(-2) in P0 up to 0.27 kg m(-2) in P1 and 0.46 kg m(-2) in P2. This represents a total C sequestration of 9.5 Mg ha(-1) in P2 and 3.4 Mg ha(-1) in P1, most of the sequestered C remaining in the recalcitrant soil pool. Additionally, higher saturated hydraulic conductivity, aggregate stability, and available water content values and lower bulk density values were measured in the restored plots. Clearly, a single addition of organic refuse to the degraded soils to increase the potential for C sequestration was effective.  相似文献   

14.
A watershed analysis of nonpoint-source pollution associated with sugarcane (Saccharum officinarum L.) production was conducted. Runoff water samples following major rainfall events from two representative sugarcane fields (SC1 and SC2) were collected and analyzed. The impact of runoff on two receiving water bodies, St. James canal (SJC) and Bayou Chevreuil (BC) in a drainage basin (Baratarian Basin), was studied. Results show that runoff flow/rainfall ratios at the SC1 were significantly higher (P < 0.0001, n = 14) than at the SC2, probably mainly due to higher sand content and higher infiltration rate of surface soil at the SC2. In runoff water samples, total suspended solids (TSS) showed a significant correlation with the concentrations of N and P. Sugarcane runoff showed a direct impact on the SJC and BC locations where seasonal variations of pollutant concentrations in the waters followed the patterns of runoff loadings. Swamp forest runoff (SFR) location showed a buffering effect of forested wetlands on water quality with the lowest measured pollutant concentrations. The ratios in total N/total P and in inorganic N/organic N in runoff waters indicated that fertilization in spring greatly contributed to the temporal increase of N loadings, especially in forms of inorganic N. Isotope signature of (15)N-nitrate in the water samples verified that the nitrate was derived from fertilizers and was consumed during transportation. Both N and P concentrations in the receiving water bodies were above the eutrophic level. During the study period, herbicide concentrations in the receiving water bodies rarely exceeded the drinking water standards.  相似文献   

15.
Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.  相似文献   

16.
Detailed maps of soil C are needed to guide sustainable soil uses and management decisions. The quality of soil C maps of Italian Mediterranean areas may be improved and the sampling density reduced using secondary data related to the nature of the ecosystem. The current study was conducted to determine: (i) the improvements obtainable in mapping soil C over a Mediterranean island by using ecosystem features and (ii) the effect of different sampling densities on the map accuracy. This work relied on field sampling (n=164) of soil properties measured over the island of Pianosa (Central Italy). Statistical analysis assessing the relationship between soil properties and ecosystem features revealed that the conceptual model of ecosystems defined on the basis of environmental features such as vegetation cover, land use, and soil type was mainly related to the variation of soil organic carbon (OC) content and to the type of Mediterranean environment. The distribution of ecosystems was used to improve the accuracy of soil OC maps obtainable by a simple interpolation approach (ordinary kriging). Substantial improvement was obtained by: (i) stratification into ecosystem types and (ii) applying locally calibrated regressions to satellite imagery that introduced both inter-ecosystem and intra-ecosystem information linked to vegetation features. This study showed that interpolation methods using information on ecosystem distribution can produce accurate maps of soil OC in Mediterranean environments, mostly because of the linkage between soil OC and vegetation types, which are spatially fragmented and heterogeneous.  相似文献   

17.
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.  相似文献   

18.
A new method to diagnose the environmental sustainability of specific orchard management practices was derived and tested. As a significant factor for soil quality, the soil carbon (C) management in the topsoil of the tree-row of an integrated and organic apple orchard was selected and compared. Soil C management was defined as land management practices that maintain or increase soil C. We analyzed the impact of the soil C management on biological (microbial biomass C, basal respiration, dehydrogenase activity, respiratory quotient) and physical (aggregate stability, amount of plant-available water, conductive mean pore diameter near water saturation) soil properties. Soil in the alley acted as a reference for the managed soil in the tree row. The total and hot-water-extractable C amounts served as a combined proxy for the soil C management. The soil C management accounted for 0 to 81% of the degradation or enhancement of biophysical soil properties in the integrated and organic system. In the integrated system, soil C management led to a loss of C in the top 0.3 m of the tree row within 12 yr, causing a decrease in microbial activities. In the tree row of the organic orchard, C loss occurred in the top 0.1 m, and the decrease in microbial activities was small or not significant. Regarding physical soil properties, the C loss in the integrated system led to a decrease of the aggregate stability, whereas it increased in the organic system. Generally, the impact of soil C management was better correlated with soil microbial than with the physical properties. With respect to environmental soil functions that are sensitive to the decrease in microbial activity or aggregate stability, soil C management was sustainable in the organic system but not in the integrated system.  相似文献   

19.
One method for recovering degraded soils in semiarid regions is to add organic matter to improve soil characteristics, thereby enhancing biogeochemical nutrient cycling. In this paper, we studied the changes in soil biological properties as a result of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) for 4 yr to restore a Xerollic Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). Organic wastes were applied at rates of 5, 7.5, and 10 Mg organic matter ha(-1). One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM and CCGC dose. After 4 yr, the plant cover in these treated plots was around 88 and 79%, respectively, compared with 5% for the control. The effects on soil microbial biomass and six soil enzymatic activities (dehydrogenase, urease, BBA-protease, beta-glucosidase, arylsulfatase, and alkaline phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the biological properties of the soil, although at the end of the experimental period and at high dosage, soil microbial biomass and soil enzyme activities were generally higher in the PM-amended soils compared to the CCGC-amended soils. Enzyme activity from the PM-amended soil was 5, 15, 13, 19, 22, 30, and 6% greater than CCGC-amended soil for soil microbial biomass, urease, BBA-protease, beta-glucosidase, alkaline phosphatase, arylsulfatase, and dehydrogenase activities, respectively. After 4 yr, the percentage of plant cover was > 48% in all treated plots and 5% in the control.  相似文献   

20.
Experiments to document the long-term effects of clipping management on N requirements, soil organic carbon (SOC), and soil organic nitrogen (SON) are difficult and costly and therefore few. The CENTURY ecosystem model offers an opportunity to study long-term effects of turfgrass clipping management on biomass production, N requirements, SOC and SON, and N leaching through computer simulation. In this study, the model was verified by comparing CENTURY-predicted Kentucky bluegrass (Poa pratensis L.) clipping yields with field-measured clipping yields. Long-term simulations were run for Kentucky bluegrass grown under home lawn conditions on a clay loam soil in Colorado. The model predicted that compared with clipping-removed management, returning clippings for 10 to 50 yr would increase soil C sequestration by 11 to 25% and nitrogen sequestration by 12 to 28% under a high (150 kg N ha(-1) yr(-1) nitrogen (N) fertilization regime, and increase soil carbon sequestration by 11 to 59% and N sequestration by 14 to 78% under a low (75 kg N ha(-1) yr(-1)) N fertilization regime. The CENTURY model was further used as a management supporting system to generate optimal N fertilization rates as a function of turfgrass age. Returning grass clippings to the turf-soil ecosystem can reduce N requirements by 25% from 1 to 10 yr after turf establishment, by 33% 11 to 25 yr after establishment, by 50% 25 to 50 yr after establishment, and by 60% thereafter. The CENTURY model shows potential for use as a decision-supporting tool for maintaining turf quality and minimizing negative environmental impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号