首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of water and fertilizer best management practices (BMPs) have not been quantified for groundwater nitrogen (N) beneath seepage irrigated vegetable fields with shallow water table environments. This effect was evaluated by a 3-yr study conducted in the Flatwoods of south Florida for watermelon ( cv. Mardi Gras and Tri-X 313) and tomato ( cv. BHN 586) using three treatments of water and inorganic fertilizer N (N) rates: (i) high fertilizer and water rates with seepage irrigation (HR), (ii) recommended fertilizer and water rates (BMP) with seepage irrigation (RR); and (iii) RR with subsurface drip irrigation (RR-SD). These treatments were implemented on six hydraulically isolated plots. The N rate treatments for high (HR) and recommended (RR and RR-SD) were based on a grower survey and BMP recommendations, respectively. Water applied, water table depth, and soil moisture content were regularly monitored for each treatment. Plant, soil, and groundwater N sampling and analyses were conducted for each season of the 3-yr study. The average water applied in HR (187 cm) was greater than RR (172 cm) and RR-SD (94 cm). Soil N maintained in crop beds for HR was significantly higher than RR and RR-SD. Soil solution analyses showed that N leached beneath HR (112 mg L) was greater ( = 0.053) than RR (76 mg L) and RR-SD (88 mg L). Shallow groundwater concentrations of dissolved inorganic nitrogen (NH-N + NO-N) were higher ( = 0.02) in HR (37 mg L) compared with RR (15 mg L) and RR-SD (19 mg L). Decreased N and water table levels can improve groundwater quality by reducing N leachate in shallow water table environments with seepage irrigated vegetable production systems.  相似文献   

2.
Nitrate (NO3-) pollution of surface and subsurface waters has become a major problem in agricultural ecosystems. Field trials were conducted from 1996 to 1998 at St-Emmanuel, Quebec, Canada, to investigate the combined effects of water table management (WTM) and nitrogen (N) fertilization on soil NO3- level, denitrification rate, and corn (Zea mays L.) grain yield. Treatments consisted of a combination of two water table treatments: free drainage (FD) with open drains at a 1.0-m depth from the soil surface and subirrigation (SI) with a design water table of 0.6 m below the soil surface, and two N fertilizer (ammonium nitrate) rates: 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). Compared with FD, SI reduced NO3(-)-N concentrations in the soil profile by 37% in spring 1997 and 2% in spring 1998; and by 45% in fall 1997 and 19% in fall 1998 (1 mg NO3(-)-N L(-1) equals approximately 4.43 mg NO3- L(-1)). The higher rate of N fertilization resulted in greater levels of NO3(-)-N in the soil solution. Denitrification rates were higher in SI than in FD plots, but were unaffected by N rate. The N200 rate produced higher yields than N120 in 1996 and 1997, but not 1998. Corn yields in SI plots were 7% higher than FD plots in 1996 and 3% higher in 1997, but 25% lower in 1998 because the SI system was unable to drain the unusually heavy June rains, resulting in waterlogging. These findings suggest that SI can be used as an economical means of reducing NO3- pollution without compromising crop yields during normal growing seasons.  相似文献   

3.
Watershed simulation models can be used to assess agricultural nonpoint-source pollution and for environmental planning and improvement projects. However, before application of any process-based watershed model, the model performance and reliability must be tested with measured data. The Soil and Water Assessment Tool version 2005 (SWAT2005) was used to model sediment and nitrogen loads from the Thomas Brook Watershed, which drains a 7.84 km rural landscape in the Annapolis Valley of Nova Scotia, Canada. The Thomas Brook SWAT model was comprised of 28 subbasins and 265 hydrologic response units, most of them containing agricultural land use, which is the main nonpoint nitrogen source in the watershed. Crop rotation schedules were incorporated into the model using field data collected within Agriculture and Agri-Food Canada's Watershed Evaluation of Beneficial Management Practices program. Model calibration (2004-2006) and validation (2007-2008) were performed on a monthly basis using continuous stream flow, sediment, and nitrogen export measurements. Model performance was evaluated using the coefficient of determination, Nash-Sutcliff efficiency (NSE), and percent bias (PBIAS) statistics. Study results show that the model performance was satisfactory (NSE > 0.4; > 0.5) for stream flow, sediment, nitrate-nitrogen, and total nitrogen simulations. Annual corn, barley, and wheat yields were also simulated well, with PBIAS values ranging from 0.3 to 7.2%. This evaluation of SWAT demonstrated that the model has the potential to be used as a decision support tool for agricultural watershed management in Nova Scotia.  相似文献   

4.
The importance of shared decision processes in water management derives from the awareness of the inadequacy of traditional--i.e. engineering--approaches in dealing with complex and ill-structured problems. It is becoming increasingly obvious that traditional problem solving and decision support techniques, based on optimisation and factual knowledge, have to be combined with stakeholder based policy design and implementation. The aim of our research is the definition of an integrated decision support system for consensus achievement (IDSS-C) able to support a participative decision-making process in all its phases: problem definition and structuring, identification of the possible alternatives, formulation of participants' judgments, and consensus achievement. Furthermore, the IDSS-C aims at structuring, i.e. systematising the knowledge which has emerged during the participative process in order to make it comprehensible for the decision-makers and functional for the decision process. Problem structuring methods (PSM) and multi-group evaluation methods (MEM) have been integrated in the IDSS-C. PSM are used to support the stakeholders in providing their perspective of the problem and to elicit their interests and preferences, while MEM are used to define not only the degree of consensus for each alternative, highlighting those where the agreement is high, but also the consensus label for each alternative and the behaviour of individuals during the participative decision-making. The IDSS-C is applied experimentally to a decision process regarding the use of treated wastewater for agricultural irrigation in the Apulia Region (southern Italy).  相似文献   

5.
Experiments to document the long-term effects of clipping management on N requirements, soil organic carbon (SOC), and soil organic nitrogen (SON) are difficult and costly and therefore few. The CENTURY ecosystem model offers an opportunity to study long-term effects of turfgrass clipping management on biomass production, N requirements, SOC and SON, and N leaching through computer simulation. In this study, the model was verified by comparing CENTURY-predicted Kentucky bluegrass (Poa pratensis L.) clipping yields with field-measured clipping yields. Long-term simulations were run for Kentucky bluegrass grown under home lawn conditions on a clay loam soil in Colorado. The model predicted that compared with clipping-removed management, returning clippings for 10 to 50 yr would increase soil C sequestration by 11 to 25% and nitrogen sequestration by 12 to 28% under a high (150 kg N ha(-1) yr(-1) nitrogen (N) fertilization regime, and increase soil carbon sequestration by 11 to 59% and N sequestration by 14 to 78% under a low (75 kg N ha(-1) yr(-1)) N fertilization regime. The CENTURY model was further used as a management supporting system to generate optimal N fertilization rates as a function of turfgrass age. Returning grass clippings to the turf-soil ecosystem can reduce N requirements by 25% from 1 to 10 yr after turf establishment, by 33% 11 to 25 yr after establishment, by 50% 25 to 50 yr after establishment, and by 60% thereafter. The CENTURY model shows potential for use as a decision-supporting tool for maintaining turf quality and minimizing negative environmental impacts.  相似文献   

6.
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA) problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max–min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga–Bhadra river system in India.  相似文献   

7.
Economic evaluations of restored or enhanced lakes in Florida indicated gravity drawdown was the least expensive action, whereas effluent diversion was 10,000 times more costly on a per hectare basis, with the other lake treatment costs occurring in the following order: gravity drawdown < grass carp introduction < mechanical drawdown < aeration < stormwater control = drawdown-dredging < effluent diversion. Within a particular treatment category, the costs spanned approximately one and one half orders of magnitude. Contrary to the abundant cost data, which permitted an economic analysis, inappropriate statistical design and lack of commitment toward sampling Florida's restored lakes undermines attempts to understand long-term water quality responses to various enhancement techniques. Using Lake Tohopekaliga as a case study, ordinary statistical tests produced contradictory and unreliable interpretations on the effectiveness of drawdown and phosphorus removal at sewage treatment plants in improving the trophic state index. This emphasizes the need for more robust statistical approaches and more detailed data collection in evaluating lake restoration activities It is unfortunate for Florida's lake restoration program that quantitative conclusions based on inferential statistics, replete with tests of assumptions, is limited to very few lakes  相似文献   

8.
9.
Changes in agricultural management can minimize NO3-N leaching, but then the time needed to improve ground water quality is uncertain. A study was conducted in two first-order watersheds (30 and 34 ha) in Iowa's Loess Hills. Both were managed in continuous corn (Zea mays L.) from 1964 through 1995 with similar N fertilizer applications (average 178 kg ha(-1) yr(-1)), except one received applications averaging 446 kg N ha(-1) yr(-1) between 1969 and 1974. This study determined if NO3-N from these large applications could persist in ground water and baseflow, and affect comparison between new crop rotations implemented in 1996. Piezometer nests were installed and deep cores collected in 1996, then ground water levels and NO3-N concentrations were monitored. Tritium and stable isotopes (2H, 18O) were determined on 33 water samples in 2001. Baseflow from the heavily N-fertilized watershed had larger average NO3-N concentrations, by 8 mg L(-1). Time-of-travel calculations and tritium data showed ground water resides in these watersheds for decades. "Bomb-peak" precipitation (1963-1980) most influenced tritium concentrations near lower slope positions, while deep ground water was dominantly pre-1953 precipitation. Near the stream, greater recharge and mixed-age ground water was suggested by stable isotope and tritium data, respectively. Using sediment-core data collected from the deep unsaturated zone between 1972 and 1996, the increasing depth of a NO3-N pulse was related to cumulative baseflow (r2 = 0.98), suggesting slow downward movement of NO3-N since the first experiment. Management changes implemented in 1996 will take years to fully influence ground water NO3-N. Determining ground water quality responses to new agricultural practices may take decades in some watersheds.  相似文献   

10.
Legislation in the United States has recently focused on improving water quality by establishing management practices that limit the quantities of nutrients entering the water supply. Timely application and quantification of the amount of manure applied throughout the grass-growing season can reduce the loss of nutrients into ground or surface water while improving the quality and quantity of grass harvested. During the 2001 and 2002 growing seasons, we measured the effects of different manure application rates on grass yields, grass nutritive value, and soil chemistry on a dairy farm. On-farm estimates of manure N were combined with yield estimates and forage quality measures to evaluate the effects of varying levels of manure application. Yield estimates, N content of grass, and the amount of N in soil and manure were monitored at each cutting for plots amended at different manure application rates. There are three major outcomes of this evaluation: (i) new grass seedings were at higher risk of elevated levels of nitrate N in forage; (ii) increased forage nitrate N at harvest was associated with malfermented silage and increased levels of ammonia N, which resulted in less efficient use of metabolizable protein for milk production; and (iii) increased understanding of N cycling between manure, soil, and plant provided an opportunity to reduce purchased fertilizer.  相似文献   

11.
A significant improvement in river water quality cannot be expected unless nonpoint-source contaminants are treated in addition to the further treatment of point-source contaminants. If river water is sprayed over a floodplain, the consequent water filtration through the sediment profile can simultaneously remove organic matter and nitrogen in the water through aerobic and denitrifying reactions. This hypothesis was tested using lysimeters constructed from polyvinyl chloride (PVC) pipe (150 cm long, 15 cm in diameter) packed with loamy sand floodplain sediment. Water was applied to the top of the lysimeters at three different flow rates (48, 54, and 68 mm d(-1)). Concentrations of NO3 and dissolved oxygen (DO), chemical oxygen demand (COD), and redox potential (Eh) in the water were measured as functions of depth after the system reached steady states for both water flow and reactions. At the rate of 68.0 mm d(-1), a reducing condition for denitrification developed below the 5-cm depth due to the depletion of O2 by organic matter degradation in the surface oxidizing layer; Eh and DO were below 205 mV and 0.4 mg L(-1), respectively. At a depth of 70 cm, COD and NO3-N concentration decreased to 5.2 and 3.8 mg L(-1) from the respective influent concentrations of 17.1 and 6.2 mg L(-1). Most biodegradable organic matter was removed during flow and further removal of NO3 was limited by the lack of an electron donor (i.e., organic matter). These results indicate that the floodplain filtration technique has great promise for treatment of contaminated river water.  相似文献   

12.
13.
Atmospheric deposition of nitrate nitrogen and ammonium nitrogen has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the bay. However, uncertainties exist regarding the accuracy of the atmospheric deposition inputs, nitrogen retention coefficients, and in-stream nutrient uptake rates used in these studies. This project was designed to reassess the potential inputs of atmospheric nitrogen deposition to the bay through the use of a high-resolution wet deposition model, improved wet and dry deposition and nutrient retention estimates, existing soils and land use data, and geographic information systems software. Model results indicate that the methods used in previous studies may overestimate the contribution of atmospheric nitrate and ammonium deposition to the Chesapeake Bay watershed (CBW). Wet and dry atmospheric nitrate and ammonium nitrogen deposition estimates to the CBW ranged from 52.7 to 141.9 and 41.9 to 60.1 million kg/yr, respectively, between 1984 and 1996. Dry and total atmospheric deposition loads to the watershed are substantially less than previous estimates. Estimates of the percent contribution of atmospherically deposited nitrogen to the Chesapeake Bay represent between 20 and 32% of the total nitrate and ammonium nitrogen load to the watershed from all nitrogen sources. While these estimates are lower than many other published estimates, regression analysis of model parameters, nitrogen retention coefficients, output, and measured in-stream nitrogen loads indicate that the calculated nitrogen loads may still be too high.  相似文献   

14.
The potential impacts of climate change are varied and highly uncertain, and pose a significant challenge to agencies charged with managing environmental risks. This paper presents a comprehensive and structured Mental Modeling approach to elicit, organize and present relevant information from experts and stakeholders about the factors influencing environmental risk management in the face of climate change. We present and review an initiative undertaken by the United States Army Corps of Engineers (USACE) to characterize climate change challenges to USACE environmental risk management activities, and to identify gaps with respect to science, engineering, and organizational processes for addressing these challenges. By employing Mental Modeling, the research has characterized the influences of climate change on USACE environmental risk management, and aggregating recommendations from 28 experts. In addition, the study identifies the most important opportunities to improve organizational response to climate change, ranging from focused research and development of technical capabilities to broad paradigm shifts and systemic organizational improvements within the USACE environmental risk management programs. This study demonstrates that Mental Modeling is a useful tool for understanding complex problems, identifying gaps, and formulating strategies, and can be used by a multitude of organizations and agencies.  相似文献   

15.
Environmentally sound management of the use of composts in agriculture relies on matching the rate of release of available N from compost-amended soils to the crop demand. To develop such management it is necessary to (i) characterize the properties of composts that control their rates of decomposition and release of N and (ii) determine the optimal amount of composts that should be applied annually to wheat (Triticum aestivum L.). Carbon and N mineralization were measured under controlled conditions to determine compost decomposition rate parameters, and the NCSOIL model was used to derive the organic wastes parameters that control the rates of N and C transformations in the soil. We also characterized the effect of a drying period to estimate the effects of the dry season on C and N dynamics in the soil. The optimized compost parameters were then used to predict mineral N concentration dynamics in a soil-wheat system after successive annual applications of compost. Sewage sludge compost (SSC) and cattle manure compost (CMC) mineralization characteristics showed similar partitioning into two components of differing ease of decomposition. The labile component accounted for 16 to 20% of total C and 11 to 14% of total N, and it decomposed at a rate of 2.4 x 10(-2) d(-1), whereas the resistant pool had a decomposition rate constant of 1.2 to 1.4 x 10(-4) d(-1). The main differences between the two composts resulted from their total C and N and inorganic N contents, which were determined analytically. The long-term effect of a drying period on C and N mineralization was negligible. Use of these optimization results in a simulation of compost mineralization under a wheat crop, with a modified plant-effect version of the NCSOIL model, enabled us to evaluate the effects of the following factors on the C and N dynamics in soil: (i) soil temperature, (ii) mineral N uptake by plants, and (iii) release of very labile organic C in root exudates. This labile organic C enhanced N immobilization following application, and so decreased the N available for uptake by plants.  相似文献   

16.
Environmental governance in the twenty-first century in Bangladesh faces serious challenges in terms of improving service delivery. There are surfeits of laws, rules and regulations as well as institutions to manage and govern the environmental sector. The legal regime is quite comprehensive, yet little attempts have been made so far to iron out the contradictions and duplications among existing rules and regulations. Institutions continue to suffer because of a number of reasons. Coordination among different ministries and other agencies in the governmental and non-governmental sectors is poor. Inter-organizational meetings and other follow-up meetings are not regularly held and usually fail to achieve their intended objectives. Though attempts have been made to involve people at the formulation stage of action plans, seldom people are taken into confidence and consulted with when these plans are implemented. One of the consequences of such a situation is people’s lack of interest in government-sponsored environmental protection programs. The decision-making procedure/situation of different environmental development projects and policies did not follow the holistic or coordinated principles so that post-impacts of works appeared vast and diverse conflicts. This paper tries to search the history of environmental protection of Bangladesh, relevant environmental laws, rules, regulations and projects and major international conventions, treaties, and protocols signed or ratified by Bangladesh as well as investigates the current situation, mechanism and decision making regarding environment in the context of environmental governance, analyzing the problems and also explored the challenges for environmental management in Bangladesh and associated problems and risks of system and finally proposed some core guidelines of effective environmental governance and system management for Bangladesh.  相似文献   

17.
18.
Sulfate-enriched water that was discharged experimentally into a floodplain forest in Florida caused H2S formation, and trees showed signs of stress within one year. Chloride-enriched water also caused trees to show signs of stress. Trees in this ecosystem may also be sensitive to changes in hydroperiod.  相似文献   

19.
Situations of water scarcity challenge sustainability and threaten small users' access to water. In response to this problem, there has been a search for a method of hydrological analysis that can better represent the needs of small water users. While this search is rooted in the debate favouring a more participatory and inclusive allocation of the resource, it also requires a new focus on smallholder hydrology that can confront the gaps and biases found in current hydrological practices in many countries. This article looks at past hydrological practices and also at results of recent studies, highlighting the perspective of smallholder irrigators in surface water planning in Zimbabwe, and groundwater planning in India. These case studies show that wider social forces, not always best science, drive hydrological practices. However, new frameworks focusing on the water user can emerge for more equitable and sustainable water management.  相似文献   

20.
Evaluation of a denitrification wall to reduce surface water nitrogen loads   总被引:1,自引:0,他引:1  
Denitrification walls have significantly reduced nitrogen concentrations in groundwater for at least 15 yr. This has spurred interest in developing methods to efficiently increase capture volume to reduce N loads in larger watersheds. The objective of this study was to maximize treatment volume by locating a wall where a large groundwatershed was funneled toward seepage slope headwaters. Nitrogen concentration and load were measured before and after wall installation in paired treatment and control streams. Beginning 2 d after installation, nitrogen concentration in the treatment stream declined from 6.7 ± 1.2 to 3.9 ± 0.78 mg L and total N loading rate declined by 65% (391 kg yr) with no corresponding decline in the control watershed. This wall, which only comprised 10 to 11% of the edge of field area that contributed to the treatment watershed, treated approximately 60% of the stream discharge, which confirmed the targeted approach. The total load reduction measured in the stream 155 m downstream from the wall (340 kg yr) was higher than that found in another study that measured load reductions in groundwater wells immediately around the wall (228 kg yr). This indicated the possibility of an extended impact on denitrification from carbon exported beyond the wall. This extended impact was inauspiciously confirmed when oxygen levels at the stream headwaters temporarily declined for 50 d. This research indicates that targeting walls adjacent to streams can effectively reduce N loading in receiving waters, although with a potentially short-term impact on water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号