首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons   总被引:30,自引:0,他引:30  
Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 microg/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 microg/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.  相似文献   

2.
Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were cooking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total.  相似文献   

3.
Bixiong Y  Zhihuan Z  Ting M 《Chemosphere》2006,64(4):525-534
A total of 188 surface soil samples were collected from different types of utilization soils in Tianjin area. Factor analysis and scatter point surface tension spine function interpolation were used to analyze types and spatial distributions of PAH sources of surface soils in Tianjin area. The results showed that most pollution sources were mixed sources including coal burning and petroleum spill. Mixed sources occupied 56.12%, 58.96%, 46.45% and 59.50% in farmland of wastewater irrigation, common farmland, wild land and city greenbelt, respectively. Other pollution sources such as vehicle emission, biogenic conversion, wood burning and natural gas combustion were also significant. The spatial distributions of pollution sources were closely related to geographic location, geographic condition and living habit of indigenes.  相似文献   

4.
The partition of hydrophobic organic compounds (HOCs) into solid-sorbed surfactant has a crucial role in describing and predicting the distribution of HOCs in solid-water-surfactant systems. The experimental results of this study indicated that the partition coefficients of polycyclic aromatic hydrocarbons (PAHs) into the solid-sorbed surfactant (Ksm) increased with an increase in the sorption amount of surfactants onto solid and reached a stable maximum value (Km sm) at the sorption of surfactants in saturation state, at which the solid surface was completely covered with the surface micelle (or admicelle). The fitted Km sm values for PAHs with different surfactants were found to have a good linear relationship with the corresponding partition coefficient of PAHs to surfactant micelles in solution (Kmc), and then a model was developed to describe and predict the distribution of PAHs in solid-water-surfactant systems. These results are of practical interest for developing effective and safe surfactant-enhanced remediation technologies.  相似文献   

5.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

6.
Concentrations, spatial distribution and sources of 17 polycyclic aromatic hydrocarbons (PAHs) and methylnaphthalene were investigated in surface sediments of rivers and an estuary in Shanghai, China. Total PAH concentrations, excluding perylene, ranged from 107 to 1707 ng/g-dw. Sedimentary PAH concentrations of the Huangpu River were higher than those of the Yangtze Estuary. The concentration of the Suzhou River was close to the average concentration of the Huangpu River. PAHs source analysis suggested that, in the Yangtze Estuary, PAHs at locations far away from cities were mainly from petrogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. In the Huangpu and Suzhou Rivers, pyrogenic input outweighed other sources. The pyrogenic PAHs in the upper reaches of the Huangpu River were mainly from the incomplete combustion of grass, wood and coal, and those in the middle and lower reaches were from vehicle and vessel exhaust.  相似文献   

7.
Total suspended particle (TSP) was collected and analyzed at rural and urban sites in Tianjin, China during the domestic heating season (from 15 November to 15 March) of 2003/4 for n-alkanes and 16 polycyclic aromatic hydrocarbons (PAHs). The normalized distribution of n-alkanes with the peak at C22, C23, C24 or C25 suggested that fossil fuel utilization was the major source of particulate n-alkanes at both sites. PAHs normalized distribution for each sample was similar and the higher molecular weight PAH dominated the profile (around 90%) indicating a stronger combustion source at both sites. Precipitation and wind were the most important meteorological factors influencing TSP and PAHs atmospheric concentrations. In the urban area the emission height had significant influence on PAHs levels at different heights under the relative stable atmospheric conditions. Coal combustion was the major source for TSP-bound PAHs at both sites based on some diagnostic ratios.  相似文献   

8.
To better assess and understand potential health risk of urban residents exposed to urban street dust, the total concentration, sources, and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in 87 urban street dust samples from Tianjin as a Chinese megacity that has undergone rapid urbanization were investigated. In the meantime, potential sources of PAHs were identified using the principal component analysis (PCA), and the risk of residents’ exposure to PAHs via urban street dust was calculated using the Incremental Lifetime Cancer Risk (ILCR) model. The results showed that the total PAHs (∑PAHs) in urban street dust from Tianjin ranged from 538 μg kg?1 to 34.3 mg kg?1, averaging 7.99 mg kg?1. According to PCA, the two to three- and four to six-ring PAHs contributed 10.3 and 89.7 % of ∑PAHs, respectively. The ratio of the sum of major combustion specific compounds (ΣCOMB)?/?∑PAHs varied from 0.57 to 0.79, averaging 0.64. The ratio of Ant/(Ant?+?Phe) varied from 0.05 to 0.41, averaging 0.10; Fla/(Fla?+?Pyr) from 0.40 to 0.68, averaging 0.60; BaA/(BaA?+?Chry) from 0.29 to 0.51, averaging 0.38; and IcdP/(IcdP?+?BghiP) from 0.07 to 0.37, averaging 0.22. The biomass combustion, coal combustion, and traffic emission were the main sources of PAHs in urban street dust with the similar proportion. According to the ILCR model, the total cancer risk for children and adults was up to 2.55?×?10?5 and 9.33?×?10?5, respectively.  相似文献   

9.
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.  相似文献   

10.
The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources.  相似文献   

11.
A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas-particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air.  相似文献   

12.
Zhu L  Wang J 《Chemosphere》2003,50(5):611-618
Twelve polycyclic aromatic hydrocarbons, multi-ringed compounds known to be carcinogenic in air of six domestic kitchens and four commercial kitchens of China were measured in 1999-2000. The mean concentration of total PAHs in commercial kitchens was 17 microg/m3, consisting mainly of 3- and 4-ring PAHs, and 7.6 microg/m3 in domestic kitchens, where 2- and 3-ring PAHs were predominant, especially naphthalene. The BaP levels in domestic kitchens were 0.0061-0.024 microg/m3 and 0.15- 0.44 microg/m3 in commercial kitchens. Conventional Chinese cooking methods were responsible for such heavy PAHs pollution. The comparative study for PAH levels in air during three different cooking practices: boiling, broiling and frying were conducted. It was found that boiling produced the least levels of PAHs. For fish, a low-fat food, frying it produced a larger amount of PAHs compared to broiling practice, except pyrene and anthracene. In commercial kitchens, PAHs came from two sources, cooking practice and oil-fumes, however the cooking practice had a more predominant contribution to PAHs in commercial kitchen air. In domestic kitchens, except for cooking practice and oil-fumes, there were other PAHs sources, such as smoking and other human activities in the domestic houses, where 3-4 ring PAHs mainly came from cooking practice. Naphthalene (NA, 2-ring PAHs) was the most predominant kind, mostly resulting from the evaporation of mothball containing a large quantity of NA, used to prevent clothes against moth. A fingerprint of oil-fumes was the abundance of 3-ring PAHs. Heating at the same temperature, the PAHs concentrations in different oil-fumes were lard > soybean oil > rape-seed oil. An increase in cooking temperature increased the levels of PAHs, especially acenaphthene.  相似文献   

13.
Motor vehicles are a major source of air pollution in Quito, Ecuador; however, little work has been done to characterize spatial and temporal variations in traffic-related pollutants, or to measure pollutants in vehicle emissions. We measured PAH continuously for one year at two residential sites in Quito, and PAH and traffic patterns for one week near a busy roadway. Morning rush-hour traffic and temperature inversions caused daily PAH maxima between 06:00 and 08:00. SO2, NOx, CO, and PM2.5 behaved similarly. At the residential sites PAH levels during inversions were 2-3-fold higher than during the afternoon, and 10-16-fold higher than 02:00-03:00 when levels were lowest. In contrast, at the near-roadway site, PAH concentrations were 3-6-fold higher than at the residential sites, and the effects of inversions were less pronounced. Cars and buses accounted for >95% of PAH at the near-roadway site. Near-roadway PAH concentrations were comparable to other polluted cities.  相似文献   

14.
Environmental Science and Pollution Research - Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) with three to five aromatic rings have been documented to ubiquitously occur in environmental...  相似文献   

15.
Zhu L  Chen B  Wang J  Shen H 《Chemosphere》2004,56(11):99-1095
The concentrations of 10 polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured for five times (July and November 1999–2002) in four water bodies of Hangzhou, China. To investigate possible sources of PAH contamination, sediments, soils, runoff water and atmospheric particles of the region were also analyzed for their PAH contents. The maximum levels of PAHs in the water bodies (34.4–67.7 μg/l) were found in July, while significantly lower PAH concentrations (4.7–15.3 μg/l) were measured in November. The contamination is substantial and it may have resulted in acute toxic effects on aquatic organisms. The measured PAH concentrations in sediments and soils (224–4222 ng/g), runoff water (8.3 μg/l) and air particles (2.3 μg/m3) are discussed in relation to concentrations and patterns found in the surface water bodies. Comparison of PAH levels in sediments and soils led to the conclusion that the erosion of soil material does not contribute significantly to the contamination of sediments. The atmospheric PAH deposition to water bodies in the city area of Hangzhou was estimated to be 530 tons/a, while the contribution of surface runoff water was estimated to be 30.7 tons/a. The ratios of selected PAH were then used to illuminate the possible origin of PAHs in the examined samples (petrogenic, pyrogenic).  相似文献   

16.
The Tibetan Plateau is suggested to be an important indicator region to study the global long-range atmospheric transport of persistent organic pollutants. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were studied in Lhasa City in the Tibetan Plateau, China. Air samples in gas and particle phases were concurrently collected by a modified high-volume air sampler from 5 August 2008 to 13 July 2009. The concentration of ∑16PAHs ranged from 18 to 160 ng?m?3 (with a geometric mean of 68 ng?m?3). The most abundant PAHs were phenanthrene and benzo(b)fluoranthene in gas and particle phases, respectively. Compared with other two similar studies in Beijing and Harbin, different temporal trends were found between gas and particle phases PAHs in Lhasa. The influences of meteorological parameters (ambient temperature and relative humidity) and air masses from China, India, Southeast Asia, and West Asia were the two important reasons for explaining the difference, which was confirmed by the 5-day backward trajectories. This is the first comprehensive study to provide the evidence for the different influences of long-range atmospheric transport on gas and particle phases PAHs pollution in the Tibetan Plateau.  相似文献   

17.
Airborne particulate matter was collected at Wajima, on the Noto Peninsula, Ishikawa, Japan by a high-volume air sampler with a quartz filter every week from 17 September 2004 to 16 September 2005. Polycyclic aromatic hydrocarbons (PAHs) extracted from filters were analyzed by HPLC with fluorescence detection. The atmospheric concentrations of PAHs at Wajima were higher during the heating period of China (when coal is burned for heat) than during the no-heating period. A meteorological analysis indicated that the air samples collected in that heating period at Wajima were transported mainly from Northeast China over the Japan Sea. Principal component analysis of nine PAHs indicated a Chinese origin of the PAHs. These results strongly suggest that the high-level PAHs detected at Wajima were the result of long-range transport from China.  相似文献   

18.
Photolysis of polycyclic aromatic hydrocarbons in water   总被引:2,自引:0,他引:2  
We have studied the photochemical reactions of eight polycyclic aromatics and heteroatom analogs (PAHs). Quantum yields and rate constants in sunlight and at single wavelengths were measured and half-lives of the PAHs as a function of the time of year were calculated. Product studies and the effect of humic acid and oxygen on rates are reported.  相似文献   

19.
Zhou J  Wang T  Huang Y  Mao T  Zhong N 《Chemosphere》2005,61(6):792-799
PAHs in five-stage size segregated aerosol particles were investigated in 2003 at urban and suburban sites of Beijing. The total concentration of 17 PAHs ranged between 0.84 and 152 ng m(-3), with an average of 116 ng m(-3), in urban area were 1.1-6.6 times higher than those measured in suburban area. It suggested a serious pollution level of PAHs in Beijing. PAHs concentrations increased with decreasing the ambient temperature. Approximately 68.4-84.7% of PAHs were adsorbed on particles having aerodynamic diameter 2.0 microm. Nearly bimodal distribution was found for PAHs with two and three rings, more than four rings PAHs, however, followed unimodal distribution. The overall mass median diameter (MMD) for PAHs decreased with increasing molecular weight. Diagnostic ratios and normalized distribution of PAHs indicated that the PAHs in aerosol particles were mainly derived from fossil fuel combustion. Coal combustion for domestic heating was probably major contributor to the higher PAHs loading in winter, whereas PAHs in other seasons displayed characteristic of mixed source of gasoline and diesel vehicle exhaust. Biomass burning and road dust are minor contributors to the PAHs composition of these aerosol particles. Except for source emission, other factors, such as meteorological condition, photochemical decay, and transportation from source to the receptor site, should to be involved in the generation of the observed patterns.  相似文献   

20.
Ou S  Zheng J  Zheng J  Richardson BJ  Lam PK 《Chemosphere》2004,56(2):107-112
Surficial sediments were sampled from nine stations in Xiamen Harbour and two stations in Yuan Dan Lake during April 2002. Sediment samples were extracted by organic solvents, separated by silica gel column chromatography and analyzed by gas chromatography-mass selective detector (GC-MSD). Selected ion monitoring was at M/Z=57 for petroleum hydrocarbons (PHCs) and individual M/Zs for each of the 15 typical polycyclic aromatic hydrocarbons (PAHs) and nine alkylated PAHs. The results showed that concentrations of PHCs and total PAHs in the sediments of Yuan Dan Lake were 1397 microg g(-1) (dry weight, dw) and 1377 ng g(-1) (dw), respectively. The ranges for PHCs and total PAHs in the sediments from Xiamen Harbour were 133-943 microg g(-1) (dw) and 98-309 ng g(-1) (dw), respectively. Shipping activities, industrial wastewater discharges, fuel oil spillage from ships and vehicles were the main sources of PHCs and PAHs in the Harbour. In addition, the widespread use of coal for industrial processes and domestic consumption accounted for the second largest source of PAHs in the sediments, while atmospheric transport and deposition of PAHs are also important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号