首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
通过连续流实验和批式实验研究了有机物和NO2--N对厌氧氨氧化菌和反硝化菌耦合脱氮特性的影响.在连续流实验中,保证底物NO2--N充足,研究了葡萄糖有机物对厌氧氨氧化颗粒污泥反应器脱氮性能的影响.当进水葡萄糖有机物的COD浓度为100mg/L时,颗粒污泥具有良好的厌氧氨氧化耦合反硝化脱氮活性,当COD浓度为200mg/L时,颗粒污泥的厌氧氨氧化耦合反硝化脱氮活性较差.当进水COD浓度分别为100,200mg/L时,反应器中颗粒污泥的厌氧氨氧化NH4+-N去除活性分别为0.096,0.071kg NH4+-N/(kgVSS-d),厌氧氨氧化NO2--N去除活性分别为0.153,0.092kg NO2--N/(kgVSS-d),反硝化NO2--N去除活性分别为0.111,0.212kg NO2--N/(kgVSS-d).在批式实验中,研究了碳源种类和COD/NO2--N比对厌氧氨氧化耦合反硝化颗粒污泥脱氮性能的影响.控制COD/NO2--N比为1~4,以葡萄糖为碳源时,厌氧氨氧化菌在亚硝态的竞争过程中占据优势;以乙酸钠为碳源时,控制COD/NO2--N比为1~4,厌氧氨氧化菌在亚硝态的竞争过程中处于劣势.  相似文献   

2.
以磁混凝预处理后的生活污水为处理对象,构建了部分亚硝化-厌氧氨氧化分体式反应器,通过曝气调控与生物强化促进部分亚硝化反应的稳定进行,并耦合厌氧氨氧化反应进行深度脱氮.近100d的运行结果表明,在生物强化和间歇曝气的控制条件下,亚硝酸盐积累率达到了89.93%;提高亚硝化反应器中曝气阶段溶解氧浓度(从0.6~0.8mg/L升高至1.0~1.2mg/L)有利于氨氮与总氮去除.该系统最高能够去除95.45%的氨氮和86.28%的总氮,实现了稳定、高效脱氮;磁混凝预处理后的生活污水在亚硝化反应器中,间歇曝气条件促进了残留的溶解性有机物为反硝化提供碳源,COD总去除率达到64.65%~74.42%,并且亚硝化反应器出水与系统最终出水的有机物组分相似,主要为难降解有机物.  相似文献   

3.
为了探讨进水碱度对低氨氮废水部分亚硝化过程的影响与机理,在控制碱度的条件下启动并运行SBR部分亚硝化反应器。结果表明,控制碱度/NH_4~+-N为3.67~4.05可成功实现低氨氮废水部分亚硝化反应器的启动和稳定运行,亚硝酸盐累积率90%。将稳定运行的SBR部分亚硝化反应器与厌氧氨氧化反应器串联运行,系统TN去除率为37.3%~84.3%。周期试验显示,当碱度值70 mg/L时,SBR部分亚硝化反应器NH_4~+-N转化速率介于2.81~5.67 mg/(L·h),当碱度减小至70 mg/L,NH_4~+-N转化速率明显下降,当碱度60 mg/L时,亚硝化反应停止。机理分析表明,以HCO_3~-盐为碱度物质时,碱度值70 mg/L可导致系统无机碳源匮乏,这是影响NH_4~+-N转化速率和控制亚硝化反应进程的主要原因。  相似文献   

4.
以磁混凝预处理后的生活污水为处理对象,构建了部分亚硝化-厌氧氨氧化分体式反应器,通过曝气调控与生物强化促进部分亚硝化反应的稳定进行,并耦合厌氧氨氧化反应进行深度脱氮.近100d的运行结果表明,在生物强化和间歇曝气的控制条件下,亚硝酸盐积累率达到了89.93%;提高亚硝化反应器中曝气阶段溶解氧浓度(从0.6~0.8mg/L升高至1.0~1.2mg/L)有利于氨氮与总氮去除.该系统最高能够去除95.45%的氨氮和86.28%的总氮,实现了稳定、高效脱氮;磁混凝预处理后的生活污水在亚硝化反应器中,间歇曝气条件促进了残留的溶解性有机物为反硝化提供碳源,COD总去除率达到64.65%~74.42%,并且亚硝化反应器出水与系统最终出水的有机物组分相似,主要为难降解有机物.  相似文献   

5.
控制ORP实现连续流反应器部分亚硝化稳定运行   总被引:3,自引:0,他引:3  
李祥  陈宗姮  黄勇  袁怡  张大林 《中国环境科学》2014,34(12):3086-3092
利用ORP在线监控设备,研究了控制ORP值实现连续流部分亚硝化反应器稳定运行的可行性,并使出水水质满足厌氧氨氧化需求.结果表明,在亚硝氮与氨氮比值、温度和pH值恒定的条件下,反应器内ORP值波动主要由于DO浓度波动引起.在稳定的亚硝化系统中,当ORP值大于250mV左右时,反应器出水亚硝氮与氨氮比值大于2.1;当ORP值控制在150mV左右时,反应器出水亚硝氮与氨氮比值稳定在1.2~1.3之间.ORP值控制在120mV时,反应器出水亚硝氮与氨氮浓度比值为0.9~1.06.将ORP值控制在150mV时,随着进水氨氮浓度由300mg/L提高至813mg/L,反应器出水亚硝氮与氨氮比值基本维持在1.1~1.3之间.但随之增加的游离氨浓度易导致亚硝化菌活性抑制.因此,在低氧环境下ORP作为连续流部分亚硝化反应器亚硝化程度的控制指标,其灵敏度和精度明显优于DO监测设备.  相似文献   

6.
以模拟城市生活污水为处理对象,采用SBR反应器,在低DO浓度条件下,成功快速启动了亚硝化反应工艺,并对启动过程中的影响因素及实现过程进行研究。反应过程中控制反应器主要参数:DO为0.5~0.7 mg/L,pH为7.2~7.5,温度30~33℃,曝气时间6 h,通过循序递增的氨氮浓度(35~85 mg/L)间歇交替进水,经过33天的稳定运行成功实现了亚硝化的快速启动并且实现亚硝态氮积累率90%以上。考察了SBR亚硝化启动过程的影响因素。研究结果表明,DO直接影响亚硝化进程,当DO平均浓度约为0.5 mg/L时,亚硝酸盐氧化菌的活性得到恢复;在SBR周期试验中,pH、DO浓度与短程硝化密切相关,可作为亚硝化过程的控制参数。  相似文献   

7.
采用连续流MBR反应器处理晚期垃圾渗滤液,考察其亚硝化性能;并探讨底物、产物和毒性物质对亚硝化性能的抑制及其动力学特性.结果表明,在进水NH4+-N浓度为(280±20) mg/L时,通过控制DO为0.5~1 mg/L,pH值为7.8~8.2和温度为(30±1)℃,成功启动MBR的亚硝化工艺,在第32d时, NO2--N积累率为84.27%;后逐步升高进水负荷,并提高DO至2~3 mg/L,逐渐实现MBR系统中以晚期垃圾渗滤液原液为进水的亚硝化,在第112d时,系统出水NO2--N浓度为889 mg/L, NO2--N积累率为97.23%.底物、产物和毒性物质的抑制实验表明,毒性物质对微生物的抑制作用强于底物和产物;当毒性物质浓度(以COD计)为1600.2 mg/L时,氨氧化速率下降了22.15%,而相应条件下若以FA为单因子抑制时,氨氧化速率下降了4.74%~6.49%,若以FNA为单因子抑制时,氨氧化速率相比下降了14.46%~15.86%.分别采用Haldane底物抑制模型、Aiba产物抑制模型以及修正后的毒性物质抑制模型对实验数据进行非线性拟合,相关系数R2分别为0.9821、0.9961和0.9924,并得到底物、产物和毒性物质的抑制动力学模型.  相似文献   

8.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

9.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

10.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

11.
为进一步充分利用原水中碳源,实现生活污水与富含硝酸盐的工业废水同步脱氮,采用2个SBR和1个UASB串联,处理低C/N生活污水和硝酸盐废水,分别启动内源反硝化反应器(ED-SBR)、半短程硝化反应器(PN-SBR)和厌氧氨氧化反应器(AMX-UASB),考察各反应器处理性能,并探讨生活污水与硝酸盐废水同步脱氮的可行性....  相似文献   

12.
常温低氨氮SBR亚硝化启动策略研究   总被引:4,自引:0,他引:4       下载免费PDF全文
分析了不同接种污泥下,不同启动策略以及不同水质下SBR反应器亚硝化的启动.研究发现,控制低溶解氧(DO为0.30mg/L)条件,接种具有一定亚硝化效果的污泥,能在短时间内实现亚硝化的启动;而接种全程硝化污泥在29d(58个周期)的培养中都未出现亚硝酸盐的积累.而通过高、低溶解氧交替培养的模式,接种全程硝化污泥的反应器也能在27d(54个周期)内达到60%以上的亚硝化率.接种全程硝化污泥,控制低溶解氧(DO为0.30mg/L),用不同C/N的水质驯化污泥.其中使用C/N为0.40~0.93的A/O生物除磷工艺二级出水作为进水的反应器在32个周期的培养中出水未出现亚硝酸盐的积累;而使用C/N比在3.50~5.34范围内的小区化粪池水能实现亚硝化的快速启动.  相似文献   

13.
SBR亚硝化快速启动过程中影响因子研究   总被引:10,自引:5,他引:5  
李冬  陶晓晓  李占  王俊安  张杰 《环境科学》2011,32(8):2317-2322
在低DO条件下对SBR反应器实现快速亚硝化的途径及影响因素进行研究.控制反应器主要参数为:DO 0.15~0.40mg/L,pH值7.52~8.30,温度22.3~27.1℃,曝气时间为8 h.通过高、低氨氮浓度(245.28 mg/L与58.08 mg/L)交替进水的方式,经过57个周期(36 d)的稳定运行成功实现...  相似文献   

14.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

15.
为探究游离亚硝酸(FNA)侧流处理絮体污泥抑制亚硝酸盐氧化菌(NOB)活性启动全程自养脱氮(CANON)工艺的可行性,考察了FNA处理对氨氧化菌(AOB)和NOB活性的影响,探究在颗粒-絮体污泥SBR反应器中水力筛分的絮状污泥经侧流FNA处理的运行效果. 结果表明:0.6mg/L FNA处理后的R1经过30d运行,NH4+-N去除率恢复到处理前的水平,并且短程硝化稳定,系统平均出水总氮为13.84mg/L,且△NO3--N/△NH4+-N比值接近CANON反应方程式理论比值0.11,成功启动CANON工艺. 而0mg/L FNA处理的R2由于NOB大量增殖导致启动失败. 批次试验结果证实,经过0.6mg/L FNA处理后,6h内NOB活性仅为对照组(FNA=0mg/L)的16.39%,并且在随后的运行中并未发现NOB活性的恢复,NOB得到了有效的抑制. 但与此同时,AOB的活性也受到了影响,反应器中NH4+-N去除率仅为处理前的69.69%,AOB活性6h仅恢复68.06%.  相似文献   

16.
采用聚乙烯醇(PVA)包埋硝化效能良好的活性污泥制备固定化颗粒,针对不同初始氨氮浓度的模拟废水,基于序批式间歇反应器小试实验,探讨了包埋颗粒的传质效能与氮去除过程特性.实验结果表明:颗粒体积投加率为10%,实验水温为26~30℃,pH值为7.5~8.5,反应器DO浓度为4~5mg/L的条件下,各初始氨氮浓度(50~400mg/L)稳定期包埋颗粒最大氨氮去除负荷为61.8~242.3mgN/(L-particles·h).包埋颗粒对氨氮的去除较符合零级反应动力学模型,其最大氨氧化速率(μmax)为271.40mgN/(L-particles·h),半饱和常数Ks为66.69mg/L,包埋颗粒内氨和氧的有效扩散系数(De)分别为0.467×10-9m2/s、0.279×10-9m2/s.SEM观察和比表面积测试结果表明,与新鲜颗粒相比,稳定期颗粒内部的比表面积和平均孔径增加.包埋颗粒,活性污泥,包埋颗粒与活性污泥混合3种体系对比实验表明,各初始氨氮浓度条件下混合体系可显著强化生物硝化与脱氮过程,并发生同时硝化反硝化现象.  相似文献   

17.
SBR反应器中有机物去除与硝化反硝化过程INT-ETS活性变化   总被引:2,自引:0,他引:2  
尹军  王建辉  解艳萃  霍玉丰  王雪峰 《环境科学》2007,28(10):2255-2258
通过检测不同进水氨氮浓度和有机物浓度下的SBR工艺系统的INT-ETS活性,研究了SBR工艺去除有机物与硝化反硝化过程中污泥生物活性的变化规律.结果表明,INT-ETS活性可以有效地表征SBR工艺系统的生化反应进程;SBR工艺一个反应周期内,有机物降解、硝化和反硝化阶段生物活性依次降低;当进水COD为300 mg/L,氨氮为40 mg/L时,系统的INT-ETS活性从232.59 mg/(g·h)下降到190.65 mg/(g·h),最终降至113.88 mg/(g·h);伴随有机物的去除和硝化反硝化的进程,INT-ETS活性一般会出现特征点,预示着不同反应阶段的开始与结束;通过不同进水氨氮浓度(14.5 mg/L 和42.0 mg/L)和有机物浓度(COD为293 mg/L 和685 mg/L)的试验,发现运行条件的变化并未明显改变SBR系统的INT-ETS活性变化规律,但会影响INT-ETS活性曲线上标志不同反应阶段的特征点出现时间.  相似文献   

18.
SBR法处理味精废水脱氮机理研究   总被引:2,自引:0,他引:2  
味精生产过程中产生的废水有机物及氨氮含量较高,一直影响味精行业废水处理达标排放。文章采用SBR法对某企业味精废水进行处理,通过连续多周期的DO、pH、COD、NH3-N、NO3--N和TN跟踪研究,分析得到了该反应工艺的主要脱氮机理,确定该工艺在曝气反应阶段存在明显的同步好氧硝化反硝化。连续20个周期的进出水NH3-N与COD监测结果表明,该反应工艺能稳定运行并保证NH3-N和COD的脱除率分别达到98.9%和90%以上,出水NH3-N和COD分别稳定在5mg/L和100mg/L以下,远远低于国家味精行业废水排放标准。该研究表明此工艺具有很强的废水处理稳定性,可以在整个味精行业推广,并提出了在提高进水负荷、取消静置反硝化及缩短曝气反应时间上进一步优化SBR水处理工艺的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号