首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
精准预测大气污染颗粒物PM2.5、PM10浓度能为大气污染防治提供科学依据,但目前较多PM2.5和PM10浓度预测在缺少污染源排放清单和能见度数据时,预测精度不高。而目前深度学习模型应用于PM2.5和PM10浓度预测的研究还鲜见报道。基于广州市2015年6月1日—2018年1月10日的空气质量和气象监测历史数据,分别构建了随机森林模型(RF)、XGBoost模型2种传统的机器学习模型和长短时记忆网络(LSTM)、门控循环单元网络(GRU)2种深度学习模型,并对广州市的PM2.5、PM10日均浓度值进行预测。结果表明:在缺少污染源排放清单和能见度数据时,4种模型也能较好地预测PM2.5、PM10日均浓度。根据MSE、RMSE、MAPE、MAE和R2等评价指标,对4个模型的PM2.5、PM10预测效果进行测评,得出深度学习GRU模型预测效果均为最佳,RF模型的预测结果均为最差。相比目前研究及应用较多的RF模型、XGBoost模型、LSTM模型,基于深度学习的GRU模型能更好地预测PM2.5、PM10浓度。  相似文献   

2.
董浩  孙琳  欧阳峰 《环境工程》2022,40(6):48-54+62
针对现有PM2.5浓度时序预测模型预测精度不高的问题,基于Informer建立了1个Seq2Seq的单站点PM2.5浓度多步时序预测模型,以历史污染物数据和气象数据为输入,实现对未来一段时间PM2.5浓度的预测。所构建模型基于ProbSparse (概率稀疏)自注意力机制提取所输入的序列信息,能够广泛地捕获输入序列的长期依赖信息,并对影响因子之间复杂的非线性关系进行建模,从而提高预测准确度。采用北京市2015-2019年逐小时空气污染物数据与气象数据进行模型训练、验证和测试,建立与循环神经网络(RNN)、长短期记忆网络(LSTM)的对比实验并与其他现有研究方法进行比较,结果表明:对未来1~6 h的PM2.5浓度时序预测,Informer的平均绝对误差(MAE)、均方根误差(RMSE)和可决系数(R2)指标均为最好,实现了较为准确的预测。  相似文献   

3.
文章基于陕西省2014年1月-2020年12月59个空气站的空气质量数据,对陕西省各城市PM2.5浓度及其影响因素进行分析和预测。通过绘制陕西省各城市PM2.5浓度及其变化的热度图和折线图可以发现,西安、宝鸡、咸阳以及渭南这4个城市的PM2.5浓度存在一定的同期变化性。利用全局、局部莫兰指数对陕西省各城市PM2.5浓度的空间效应进行检验,结果表明,陕西省各城市PM2.5浓度具有正向的空间自相关性,其中西安、咸阳和渭南呈现出较强的PM2.5高浓度聚集效应。考虑到地理位置对PM2.5浓度的影响,建立陕西省各城市PM2.5浓度与PM10、O3、NO2、SO2、CO浓度的空间变系数模型。通过绘制解释变量回归系数估计值的3D散点图可以发现,PM10、NO2及CO浓度等在不同的地理位置对PM  相似文献   

4.
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5)  μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂.   相似文献   

5.
北京市区春夏PM2.5和PM10浓度变化特征研究   总被引:2,自引:0,他引:2  
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。  相似文献   

6.
为进一步提高PM2.5浓度预测的精度,基于XGBoost和LSTM进行改进得到变权组合模型XGBoost-LSTM(Variable).过对预测因子进行相关性分析,得到其它大气污染物和气象因素对PM2.5浓度的影响,确定最优PM2.5浓度预测因子,再将预处理后数据集输入LSTM模型和XGBoost模型分别进行预测,采用基于残差改进的自适应变权组合方法得到最终预测结果.结果表明,污染物变量的相对重要性高于气象因子变量,其中当前PM2.5和CO浓度的相对重要性较高,而平均风速和相对湿度重要性较低.XGBoost-LSTM(Variable)模型的RMSE、MAE和MAPE值为1.75、1.12和6.06,优于LSTM、XGBoost、SVR、XGBoost-LSTM(Equal)和XGBoost-LSTM(Residual)模型.分季节预测结果表明,XGBoost-LSTM(Variable)模型在春季预测精度最好,而夏季预测精度较差.模型预测精度高的原因在于其不仅考虑了数据的时间序列特征,又兼顾了数据的非线性特征.  相似文献   

7.
为探究大气环境中污染物与气象要素交互作用对PM2.5浓度变化的影响特征,利用成都市2014~2020年逐日大气污染物资料以及同期的气象资料,采用广义相加模型(GAMs)分析不同影响因素对当地PM2.5浓度变化的影响效应.结果表明,单影响因素GAMs模型中,无论全年还是冬季,PM2.5浓度与平均气温(T)、相对湿度(RH)、平均风速(Wind)、降水量(Prec)、O3、NO2、SO2和CO间均呈非线性关系,其中CO、NO2、SO2T和Wind对PM2.5浓度影响较大,与全年不同的是,冬季T和O3对PM2.5浓度变化的影响效应较全年明显减弱.多影响因素的GAMs模型中,T、Wind、RH、CO、NO2、SO2和O3这7个解释变量对PM2.5浓度变化的影响均较显著,构建的全年多影响因素GAMs模型调整后的R2=0.759,方差解释率为76.42%,冬季R2=0.708,方差解释率为72.2%,无论是全年还是冬季,CO都是PM2.5浓度变化的主导影响因素.GAMs交互效应模型发现,全年弱低温(7℃左右)+高相对湿度+高浓度CO+高浓度NO2+高浓度SO2协同作用条件下有利于PM2.5浓度的生成;冬季低Wind+高RH+高浓度CO+高浓度NO2+高浓度SO2共存条件下有利于PM2.5的生成,即该条件对PM2.5浓度的生成有协同放大效应.运用GAMs模型能够对PM2.5污染的主导影响因素进行识别,并定量化分析影响因素单效应及其交互作用对PM2.5浓度变化的影响特征,对PM2.5浓度污染防控研究具有重要指示意义.  相似文献   

8.
赵亚南  王跃思  温天雪  刘全 《环境科学》2013,34(4):1232-1235
为研究珠江三角洲背景区域大气气溶胶中水溶性离子的特征及其来源,于2007年1月~2008年12月,在鼎湖山利用大流量滤膜采样器采集PM2.5样品,并用离子色谱(IC)分析其中的水溶性离子成分含量.结果表明,PM2.5中总水溶性离子年平均浓度为(36.3±16.4)μg.m-3.其中,3种主要离子SO24-、NH4+和NO3-占总离子浓度的89%;夏季受到来自海洋气团的影响,Na+和Cl-相关性明显增强,相关系数R2为0.91;NO3-/SO24-的平均值为0.32,表明固定源对鼎湖山地区污染的贡献更大;PM2.5中Σ阳离子电荷/Σ阴离子电荷的变化范围为0.44~2.59,平均值是1.03,水溶性离子电荷基本平衡.  相似文献   

9.
以辽宁鞍山市2019年小时气象数据、大气污染物小时数据为基础,基于广义可加模型(GAM),在考虑城市大气污染本底值、月份等混杂因素的情况下构建响应关系模型。引入相对危险度(RR)概念计算定量关系,分析气象因子(风速、温度、相对湿度)的改变对PM2.5与SO2的影响。结果表明:三类气象因子对PM2.5的影响均存在阈值效应;风速的影响百分率最高,在低于4 m/s范围内变化时,每单位增量引起PM2.5浓度的相对改变量为-7.63%;温度的增加使PM2.5浓度呈U形变化,其阈值为10℃,温度在两个阈值区间引起的PM2.5浓度相对改变量分别为-0.56%与0.6%;除干燥天气或降雨时,相对湿度的增加多导致城市PM2.5浓度的升高;当响应变量为SO2时,风速、温度、相对湿度三类气象因子每单位减小量对应的SO2浓度相对改变量分别为-0.91%、-0.43%和0.98%。  相似文献   

10.
董红召  廖世凯  杨强  应方 《中国环境科学》2022,42(10):4537-4546
为实现工业园区企业污染排放精细化管控,捕捉工业园区内企业污染排放与污染物浓度之间的响应关系,提出一种集成大气环境容量(AEC)和时空特征的工业园区PM2.5浓度预测模型.通过有限体积法获得工业园区日均大气自净能力指数(ASI),结合工业园区日排放数据作为AEC特征;同时利用小波分析和Pearson相关系数法提取时空特征,包括目标监测站PM2.5浓度的时间变化特征和其与周围监测点PM2.5的空间相关特征.通过CNN获取训练数据中PM2.5的关联特征,并利用BILSTM充分反映时间序列训练数据中隐含的关键历史长短期依赖关系,确保快速准确的预测性能,以2018~2020年濮阳市工业园区大气污染物观测数据、气象数据及排放数据进行实验验证.结果表明:本文提出的CNN-BILSTM预测模型相较于传统LSTM模型预测精度提升10%;AEC特征和时空特征有利于提高模型精度和稳定性,集成AEC和时空特征的CNN-BILSTM预测模型在PM2.5污染天数预测准确率最高,达93%;分季节预测结果表明...  相似文献   

11.
利用泉州市空气自动监测站的监测资料,研究泉州市灰霾天气时PM2.5浓度与风速、温度、相对湿度等气象因素及能见度的关系.结果表明:泉州市灰霾天气期间往往会伴随气象因素及能见度的变化,灰霾发生前,风速降低,相对湿度减小,逆温层形成,能见度降低;灰霾结束前,风速增大,相对湿度趋于稳定,逆温层消失,能见度增大.灰霾发生时,PM2.5的浓度与风速、能见度基本呈负相关的关系,与相对湿度基本呈正相关关系.气象条件及能见度的变化可以为灰霾天气时污染状况的预判提供重要的参考.  相似文献   

12.
2012年灰霾试点监测结果表明,灰霾日天数有明显减少。细颗粒物(PM2.5)浓度限值增加,使仅因重庆城市地域和气候原因造成部分相对湿度较低,而实际环境空气质量较好的灰霾日排除在外,更客观评价灰霾日发生规律。结合气象条件和颗粒物质量浓度对比情况表明,局域气候条件的变化将促使PM2.5和PM1吸湿增长明显,一定程度上促使粗颗粒物PM10质量浓度增加,局域污染物传输扩散不利,能见度减低,灰霾现象频增。  相似文献   

13.
基于颗粒物浓度集总参数模型建立室内PM2.5预测模型,同时对模型中的关键参数穿透率、沉降率理论模型进行理论计算.以常州市某住宅建筑为例,通过动态模型对穿透率和沉降率模型进行实验验证,实验采样时间为2017年3月~2018年1月.根据实验数据计算换气次数在0.31~0.89h-1范围内PM2.5通过维护结构的穿透率为0.78~0.97,室内PM2.5沉降率为0.3~0.69h-1.本模型能较好地适用于自然通风、机械通风等不同通风工况室内颗粒物浓度预测.当室外PM2.5浓度在135~150μg/m3变化时,使用过滤效率为82%的新风系统可维持室内PM2.5浓度值在40~46μg/m3.  相似文献   

14.
重庆市大气颗粒物污染特征及影响因素分析   总被引:1,自引:1,他引:1  
杨显双  伍丽梅 《环境工程》2016,34(3):97-101
利用重庆市17个大气自动站实时发布的数据,对PM_(2.5)与PM_(10)污染特征、变化规律与气象因子的相关性进行了分析。结果表明:2013年PM_(2.5)和PM_(10)的年均值分别为70,106μg/m3,均超过国家Ⅱ级标准。月均值、季均值变化明显,总体均呈两头高中间低的\"U\"型分布。2013年PM_(2.5)占PM_(10)的比例较大,均值为65.8%,PM_(2.5)和PM_(10)的Pearson相关系数为0.974,在0.01的置信水平上(双侧)显著相关。PM_(2.5)、PM_(10)的浓度与气温、大气压极显著相关;PM_(2.5)、PM_(10)的浓度与降雨量、日照时数(时)显著相关。  相似文献   

15.
为了能及时、准确的估算出PM2.5浓度及污染等级,分别构建了K最邻近模型(KNN)、BP神经网络模型(BPNN)、支持向量机回归模型(SVR)、高斯过程回归模型(GPR)、XGBoost模型和随机森林模型(RF) 6个PM2.5浓度预测模型,选取江西省赣州市为实验区域,采用2017~2018年逐小时气象站数据、PM2.5浓度数据和Merra-2再分析数据开展PM2.5预测实验.结果表明,缺少污染物观测数据时,利用能见度和气象因子等数据也能较好的预测PM2.5浓度.在PM2.5浓度预测精度方面,XGBoost模型最高,随机森林模型次之,高斯过程回归模型最差.6个模型的预测精度总体呈现冬季最高,秋季和春季次之,夏季最低.XGBoost模型的PM2.5污染等级预测准确率高于其他模型,综合准确率达87.6%,并且XGBoost模型具有训练时间短,占用内存小等优点.XGBoost模型的变量重要性结果表明,能见度变量的重要性最高,相对湿度和时间变量次之.本研究可为环境部门准确预测、预报PM2.5浓度提供参考.  相似文献   

16.
基于重庆市监测数据,运用协整与误差修正模型研究了输入变量平均温度、相对湿度、PM_(10)浓度、一氧化碳(CO)浓度、二氧化氮(NO2)浓度以及二氧化硫(SO_2)浓度对输出变量PM_(2.5)浓度的影响机理。结果表明:1)PM_(2.5)与空气中相对湿度、PM_(10)浓度和CO浓度呈正相关关系;2)当系统短期偏离长期均衡时,系统将以0.213的调节力度将非均衡状态拉回到均衡状态;3)建立的模型预测误差极小,并具有较强的泛化能力。  相似文献   

17.
主要利用连云港市环境监测中心站的大气环境自动监测平台的监测数据,对PM2.5质量浓度的变化特征以及与气象要素的关系分析。结果表明,连云港市的PM2.5质量浓度的变化特征基本上有明显的夏季与非夏季两种季节性特征。在夏季,PM2.5污染程度较轻,而在非夏季,PM2.5污染程度较重;风速与PM2.5质量浓度变化曲线几乎是负相关的。当风速大的时候,利于污染物的扩散;而风速小的时候,容易使得污染物浓度变大;PM2.5质量浓度变化曲线与温度的关系几乎呈现的是正相关性。气温的变化不总是反映空气质量的好坏情况,而逆温却易使污染物浓度升高;PM2.5质量浓度变化曲线与相对湿度的关系呈现的是正相关性;PM2.5质量浓度变化曲线与气压的关系在总体是呈负相关的。  相似文献   

18.
翟华  朱彬  赵雪婷  潘晨 《中国环境科学》2018,38(11):4001-4009
利用站点气象和PM2.5资料以及NCEP的全球再分析数据集研究了2015年12月17~28日长江三角洲地区一次重污染天气过程.结果表明:地面弱气压场是此次污染事件发生发展的主要天气背景,而冷空气带来的大风使PM2.5浓度迅速下降,有效清除了PM2.5.区域热力因子和动力因子分析发现,此次过程中大气中低层层结稳定、近地面逆温强,有利于PM2.5和水汽的累积,使其浓度水平升高;对于动力因子来说,较小的通风率和较低的边界层高度不利于污染物扩散,同样使PM2.5浓度上升.两者相比,热力因子对PM2.5浓度值的贡献比动力因子大.结合后向轨迹和排放源分布发现,此次污染过程中长江三角洲地区的PM2.5主要受来自其西北方向的大陆气团(占46%左右)的影响,这些气团途经高污染排放源并把污染物远距离传输至长江三角洲地区.最后利用PSCF和CWT对长江三角洲地区污染物的潜在来源进行了分析,发现PM2.5的来源主要集中在安徽、河南、山西、山东以及长江三角洲本地,说明此次过程中长江三角洲地区的污染物浓度受到远距离输送和局地过程的共同影响.  相似文献   

19.
滑坡的短期预报研究是当前国内外滑坡领域的重要研究方向之一。在滑坡的中短期时间预报中,基于统计学的预测模型是主要的分析预测工具。采用两种理论上比较成熟的ARIMA模型和GM(1,1)与ARMA(p,q)组合模型来模拟滑坡的累积位移量,并对这两种模型的优缺点以及各自适用条件进行了对比分析。结果表明:两种模型都能较好地拟合滑坡累积位移量时间序列并做出一定精度的预测,但是两种模型的适用条件不同。本研究可为滑坡短期预报提供借鉴和参考。  相似文献   

20.
采集大连市4个大气自动监测点位30dPM2.5和PM10质量浓度小时值的监测数据,通过对每个点位720个有效数据对的统计分析,研究二者质量浓度的相关性及 PM2.5/PM10比值的分布情况,并研究了气象因素对PM2.5与PM10的影响。结果表明,雾使PM2.5PM10浓度都减小,但二者比值也随之降低;强风会使PM10浓度增大,但PM2.5浓度却减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号