共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterium (Paracoccus sp. YM3) capable of degrading carbofuran was isolated from carbofuran-contaminated sludge. The strain was shown to metabolize carbofuran (50 mg L(-1)) to carbofuran-7-phenol in minimal salt medium within 6 days in which the pesticide was the only source of carbon. Carbofuran and its main metabolite were analyzed by high performance liquid chromatography (HPLC). The addition of an other carbon source led to accelerated biodegradation. The relevant degrading-enzyme was intracellular and inducible. A tobacco hypersensitivity experiment showed that YM3 could eliminate carbofuran in soils effectively and safely. This is the first report of a Paracoccus sp. that could degrade carbofuran. The present study may provide a basis for biotreatment of wastewaters and bioremediation of carbofuran-contaminated soils. 相似文献
2.
A bacterium ( Paracoccus sp. YM3) capable of degrading carbofuran was isolated from carbofuran-contaminated sludge. The strain was shown to metabolize carbofuran (50 mg L ?1) to carbofuran-7-phenol in minimal salt medium within 6 days in which the pesticide was the only source of carbon. Carbofuran and its main metabolite were analyzed by high performance liquid chromatography (HPLC). The addition of an other carbon source led to accelerated biodegradation. The relevant degrading-enzyme was intracellular and inducible. A tobacco hypersensitivity experiment showed that YM3 could eliminate carbofuran in soils effectively and safely. This is the first report of a Paracoccus sp. that could degrade carbofuran. The present study may provide a basis for biotreatment of wastewaters and bioremediation of carbofuran-contaminated soils. 相似文献
3.
Salicylic acid, which is biosynthesized inside plant and is often found and accumulated in soil due to plant debris decaying, is considered as a signaling substance during plant-microbe interactions. It is involved in the cycling of biogeochemistry and related to plant resistance to biotic and abiotic stress. The antibiotic effect of salicylic acid on Fusarium oxysporum f.sp.niveum (FON) was studied to investigate the relationships between the salicylic acid and the fungus in the ecological interaction of plant-microbe. Results showed that the biomass, colony diameter, number of conidium germination and conidium production of FON were decreased by 52.0%, 25.7%, 100% and 100% at concentrations of 800 mg L(-1). However, mycotoxin yield was increased by 233%, pectinase activity raised by 168.0% and cellulase activity increased by 1325% compared to control at higher concentrations. It was concluded that salicylic acid as an allelochemical greatly inhibited FON growth and conidia formation and germination, though stimulated mycotoxin production and activities of hydrolytic enzymes by FON. 相似文献
4.
Persistent environmental pollutants are a growing problem around the world. The effective control of the pollutants is of great significance for human health. Some microbes, especially Arthrobacter, can degrade pollutants into nontoxic substances in various ways. Here, we review the biological properties of Arthrobacter adapting to a variety of environmental stresses, including starvation, hypertonic and hypotonic condition, oxidative stress, heavy metal stress, and low-temperature stress. Furthermore, we categorized the Arthrobacter species that can degrade triazines, organophosphorus, alkaloids, benzene, and its derivatives. Metabolic pathways behind the various biodegradation processes are further discussed. This review will be a helpful reference for comprehensive utilization of Arthrobacter species to tackle environmental pollutants. 相似文献
5.
测定了降解菌Alcaligenessp.YF11对不同浓度杀灭菊酯的降解及其降解途径。在纯培养系统中,Alcaligenessp.YF11对100mg/L的杀灭菊酯的降解符合零级动力学特征,其降解速率为2.1mg/L·h;50mg/L的杀灭菊酯在24h的降解率为87.5%;10mg/L的杀灭菊酯10h的降解率为71.0%。Alcaligenesso.YF11对杀灭菊酯的降解为矿化作用。 相似文献
6.
3H-Trifluralin was synthesized by condensation of 3H-4-chloro-3,5-dinitro-alpha, alpha, alpha-trifluorotoluene with di-n-propylamine. After incubation of trifluralin with Aspergillus carneus, Fusarium oxysporum and Trichoderma viride for 10 days, a small percentage (less than 10%) of unchanged herbicide was recovered in the extractable fraction. This indicates a fairly rapid degradation of the herbicide by the fungal species. Other than trifluralin, the culture medium contained at least five labelled products: 2,6-dinitro-N-n-propyl-alpha, alpha, alpha-trifluoro-p-toluidine; 2,6-dinitro-alpha, alpha, alpha-trifluoro-p-toluidine; 2-amino-6-nitro-alpha, alpha, alpha-trifluoro-p-toluidine, 2,6-dinitro-4-trifluoromethyl phenol and a major polar product which constituted more than 50% of the total extractable transformation products. A pathway, which simulates that of aerobic degradation of the herbicide in soil, is suggested for the microbiological degradation of trifluralin. 相似文献
7.
Abstract The respiration and lipid contents and the tolerance to mycostatin, chloramphenicol and cycloheximide were compared in the two morphologically similar forms of the tomato pathogens: Fusarium oxysporum lycopersici (FOL) and the virulent form F. oxysporum radicis lycopersici (FORL). The differential tolerances to mycostatin were the most significant feature of the comparisons. The MIC for FORL was 24 μg/mL for the mycelium and 38 μg/mL for the spores. For FOL, the MIC was 8 ug/mL for both. This pattern of higher mycostatin tolerance by FORL obtained at 19°C and 27°C. There were differences between FOL and FORL in their fatty acid composition. FORL contained about three times as much C 18:0 and over twice as much C 18:1 as FOL. Conversely FOL contains over two times as much C 16:1 as FORL. There appeared to be no significant differences between the respiration rates of the two pathogens. The data is discussed relative to their significance as the biochemical basis for examining pathogenicity and virulence between the two organisms. 相似文献
8.
A bacterial isolate, strain NTOU1, originally isolated from the cooling system in an oil refinery could decolorize and detoxify crystal violet under anaerobic conditions. The strain was characterized and identified as a member of Shewanella decolorationis based on Gram staining, morphology characters, biochemical tests, the 16S rRNA gene and the gyrase subunit beta gene (gyrB). The optimum pH value and temperature for decolorization of crystal violet by this strain under anaerobic conditions were pH 8-9 and 30-40 degrees C, respectively. Formate (20 mM) was the best electron donor. Addition of ferric citrate did not inhibit decolorization of crystal violet, the addition of thiosulfate, ferric oxide, or manganese oxide slightly decreased decolorization, while addition of nitrite (20 mM) inhibited the decolorization of crystal violet. By supplementing the medium with formate and ferric citrate and cultivating it under optimum pH and temperature, this strain could remove crystal violet, at a concentration of 1500 mg l(-1), at the rate of 298 mg l(-1) h(-1) (during decolorization the OD(600) of the cell culture increased from approximately 0.6 to approximately 1.2). GC/MS analysis of the degradation products of crystal violet detected the presence of N,N'-bis(dimethylamino) benzophenone (Michler's Ketone), [N,N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N,N-dimethylaminobenzaldehyde, N,N-dimethylaminophenol, and 4-methylaminophenol. These results suggest that crystal violet was biotransformed into N,N-dimethylaminophenol and Michler's Ketone prior to further degradation of these intermediates. This paper proposes a probable pathway for the degradation of crystal violet by this Shewanella sp. Cytotoxicity and antimicrobial tests showed that the process of decolorization also detoxify crystal violet. 相似文献
9.
Burkholderia sp, a gram-negative, rod-shaped, aerobe, capable of degrading quinoline was immobilized in calcium alginate gel beads and used for degradation of quinoline in aqueous solution in the reactor. The optimal conditions for immobilization of the microorganism, such as alginate concentration, calcium ion concentration, initial cell loading, hardening time and bead size, were determined with a view to improving the quinoline degradation rate. The characteristics of quinoline degradation by immobilized microbial cells were investigated. The repeated use of immobilized cells for quinoline degradation was performed and the results revealed that the bioactivity of immobilized cells was stable over 100 h in the repeated batch cultivation for quinoline degradation. 相似文献
10.
AbstractMalathion is an organophosphorus pesticide widely used in agricultural crops, despite its toxicity. In addition, malaoxon occurs by oxidation of malathion being more toxic. The toxic effects of malathion and malaoxon in humans include hepatoxicity, breast cancer, genetic damage and endocrine disruption. The aim of this study involved assessing the effect of malathion commercial grade on Chroococcus sp., and its potential as an alternative to the removal of this pesticide and its transformation product such as malaoxon. We evaluated the effect of malathion at different concentrations (1, 25, 50, 75 and 100?ppm) on the biomass of the cyanobacteria Chroococcus sp. grown in medium BG-11; also, we analyse its ability to degrade both malathion and malaoxon into a temperature of 28?±?2?°C and at pH 6. The results showed that 50?ppm of malathion the cyanobacteria Chroococcus sp. reached the highest removal efficiency of malathion and malaoxon (69 and 65%, respectively); also, the growth rate of Chroococcus sp. increased without inhibiting the production of chlorophyll “a”, this can be explained by the hormesis phenomenon. Therefore, we consider that the cyanobacteria Chroococcus sp. may be a good candidate for bioremediation of aquatic systems contaminated with organophosphorus pesticides such as malathion and its transformation product such as malaoxon. 相似文献
11.
A nicotine-degrading bacterium, strain HF-2, was isolated from tobacco waste-contaminated soil and identified as a member of Arthrobacter sp. based on morphology, physiological tests, 16S rDNA sequence and phylogenetic characteristics. At thermal denaturation test indicated that the G + C mol% of strain HF-1 was 63.5. The relationship between the growth of the isolate and the nicotine degradation suggested that strain HF-2 could utilize nicotine as sole sources of carbon, nitrogen and energy. Blue pigment was observed during the nicotine degradation by strain HF-2. The isolate grew well at 20 to 33°C, initial pH 6.5 to 8.0 and 0.5 to 2.0 g L ?1 of nicotine concentration in the nicotine inorganic salt media. The maximum growth and nicotine degradation occurred at 30°C, initial pH 7.0 and 0.7 g·L ?1 of nicotine concentration in media under natural incubation condition. Strain HF-2 could degrade 100% of nicotine under the optimized incubation conditions for 43 h. The concentrations of nicotine were monitored by high performance liquid chromatography. This study demonstrates Arthrobacter sp. strain HF-2 had a great ability to degrade nicotine, and it may be available for the application to the bioremediation of environments contaminated by tobacco waste. 相似文献
12.
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μmax, Ks and Ki were determined to be 0.13 h −1, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant. 相似文献
13.
The inhibitory activity of amphotericin B, clotrimazole, econazole, miconazole and nystatin was compared against Fusarium oxysporum f.sp. radicis-cucumerinum. The most efficient antifungal agent against the growth of Fusarium oxysporum was econazole, followed by clotrimazole, miconazole, amphotericin and nystatin. The ED50 and ED90 values were 0.053 and 1.002 ppm for econazole, 0.088 and 1.100 ppm for clotrimazole, 0.173 and 3.210 ppm for miconazole, 0.713 and greater than 48 ppm for amphotericin and 3.860 and 16.702 ppm for nystatin. The ED50 values of nystatin and amphotericin against spore germination of Fusarium oxysporum were determined at 3.1427 ppm and 8.3990 ppm respectively, nystatin was 2.76 times more effective than amphotericin, while no effect was observed after the addition of econazole, clotrimazole and miconazole. The tested azoles were more effective than amphotericin and nystatin on growth inhibition of Fusarium oxysporum but amphotericin and nystatin acted significantly better on spore germination of Fusarium. 相似文献
14.
Pseudmonas sp. D8 strain, which has the potential to utilize toluene as a sole carbon source, was isolated. At a concentration of 100 mg/l, this strain was found to efficiently degrade toluene and benzene (both individually and in mixture) in culture medium at 30°C and pH7. Following a two-hour lag phase, complete biodegradation of 100 mg/l toluene or benzene occurred within 6 to 8 hours. The addition of nitrate, phosphate, or sulfate at various concentrations were found to have significant influence on both toluene and benzene degradation. In addition, results show that the D8 strain has the ability to degrade monochlorophenols, nitrophenols, and phenol, but not aliphatic compounds. Inoculation of groundwater samples containing 100 mg/1 toluene or benzene with Pseudmonas sp. D8 resulted in rapid degradation within 24 33 hours. 相似文献
15.
A highly effective acetochlor-degrading bacterial strain (D-12) was isolated from the soil of a pesticide factory. The strain was identified as Achromobacter sp. based on its 16S rRNA gene sequence. The strain D-12 optimally degrades acetochlor at a pH of 7.0 and a temperature of 30°C in a mineral salts medium (MSM). Approximately 95% of acetochlor was degraded by the stain treated at a concentration of 10 mg L ?1 after 5 days of incubation. A chiral high performance liquid chromatography (HPLC) system was used to study the enantioselectivity during the process. However, no obvious enantioselective biodegradation was observed. The primary biodegradation acetochlor products were identified by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). The results indicated that the strain D-12 could be applied in the bioremediation of an acetochlor-polluted environment. 相似文献
16.
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L ?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L ?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L ?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L ?1 and 50 mg L ?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L ?1 and the inoculation rate of 10 11 g ?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil. 相似文献
17.
Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0–9.0 and 30–40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg 2+ and Mn 2+ (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe 3+ or Fe 2+ was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N, N′dimethyl- p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR. 相似文献
18.
Thirty-nine white-rot fungi belonging to nine species of Agaricomycotina (Basidiomycota) were initially screened for their ability to decrease olive-mill wastewater (OMW) phenolics. Four strains of Ganoderma australe, Ganoderma carnosum, Pleurotus eryngii and Pleurotus ostreatus, were selected and further examined for key-aspects of the OMW biodegradation process. Fungal growth in OMW-containing batch cultures resulted in significant decolorization (by 40-46% and 60-65% for Ganoderma and Pleurotus spp. respectively) and reduction of phenolics (by 64-67% and 74-81% for Ganoderma and Pleurotus spp. respectively). COD decrease was less pronounced (12-29%). Cress-seeds germination increased by 30-40% when OMW was treated by Pleurotus strains. Toxicity expressed as inhibition of Aliivibrio fischeri luminescence was reduced in fungal-treated OMW samples by approximately 5-15 times compared to the control. As regards the pertinent enzyme activities, laccase and Mn-independent peroxidase were detected for Ganoderma spp. during the entire incubation period. In contrast, Pleurotus spp. did not exhibit any enzyme activities at early growth stages; instead, high laccase (five times greater than those of Ganoderma spp.) and Mn peroxidases activities were determined at the end of treatment. OMW decolorization by Ganoderma strains was strongly correlated to the reduction of phenolics, whereas P. eryngii laccase activity was correlated with the effluent’s decolorization. 相似文献
19.
The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30°C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L ?1 of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine. 相似文献
20.
The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30°C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L(-1) of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine. 相似文献
|