首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为确保2000-2010年桂林淳江上游进入城区水质能保持国家Ⅱ类水质标准进行纳污总量控制及其水质变化规律研究。采用系数法对200-2010年陆源排污总量进行科学预测,按河流功能划要求,首次利用动态数学模型计算河流在不同流量,不同纳污总量条件下保持Ⅱ类水质的最适纳污值,探讨了Li江水质变化规律。为环境管理打下基础。  相似文献   

2.
以北京市3条具有不同功能的代表性河流(清河:纳污排洪;京密引水渠:供水水源;小月河:景观用水)作为研究对象,分析测定了33个水质指标,采用内梅罗指数法与大型蚤急性毒性测试法对3条河流的水质与毒性状况进行了评价,同时运用主成分分析法对毒性产生的原因和影响水质的因素进行了初步探讨.结果表明,1)3条河流已受到不同程度的污染,水质和毒性状况均不容乐观.作为纳污排洪的清河大部分采样点水质较差,生物毒性极高;作为景观用水的小月河水质一般,具有一定的生物毒性;作为供水水源的京密引水渠水质一般,但毒性较低.2)水样生物毒性与Cl-、Ca、K、Li、Mn、Na、Cr、Ni等指标有关;内梅罗水质指数与NO2-、Cl-、K、Na、Ni等指标有关.3)某些指标(如NO2-)超标会对水质分级产生较大影响,但对生物毒性贡献不大,而低浓度的重金属,不会对水质分级产生贡献,却会对生物的生理活动产生影响,综合化学指标和毒性指标共同评价水质更为合理.  相似文献   

3.
漓江桂林市区段夏季浮游植物群落特征与水质评价   总被引:2,自引:0,他引:2  
浮游植物是水生态系统的重要组成部分,其群落结构变化与水体环境条件密切相关,能直接影响水生态系统的功能,是水环境质量优劣的重要指示因子之一。为揭示漓江流域浮游植物群落结构特征及其与水质的相互关系,2012年8月对漓江桂林市区段干流(桂林赵家桥村至桂林王家村)的理化指标及浮游植物的群落组成分布进行了分析研究,并结合水体理化指标和生物指数对漓江水质进行了评价。结果表明,漓江水体高锰酸盐指数、总氮、总磷、氨氮的变化范围依次为1.80-6.20、1.12-2.68、0.022-0.282、0.34-1.73 mg·L-1,其含量在上游变化平稳,到三条支流汇入处大幅增高,最高值均出现在南溪河入口处。共调查到浮游植物7门60属128种,其中硅藻50种(占种类组成的39.06%),绿藻52种(占40.63%),蓝藻16种(占12.50%),裸藻7种(占5.47%),黄藻、金藻和甲藻各1种(分别占0.78%)。优势种依次为冠盘藻(S. tephanodiscus)、蛋白核小球藻(C. pyrenoidosa)、喙头舟形藻(N.rhynchocephala)、短小舟形藻(N.exigua)、广缘小环藻(C.Bodanica)、四尾栅藻(S.quadricanda)和肘状针杆藻(S. ulna)。浮游植物密度为10.3×10^4-1047.0×10^4ind.·L^-1,平均密度为474.7×10^4 ind.·L^-1,其中密度最小的是赵家桥村,密度最大的是南溪河入口;种类上绿藻门占据多数,密度和优势种分布上以硅藻居多,总体上属于硅藻-绿藻型水体。浮游植物多样性指数Shannon-Wiener指数(H)在1.60-4.27之间,Simpson指数(D)在2.24-12.74之间,水质总体上为清洁-轻度污染。Margalef指数(d)在1.85-4.23之间,Pielou指数(J)在0.40-0.83之间,指数值总体较高,漓江水体中浮游植物群落结构比较稳定,受外界环境的影响较小。漓江干流水质总体上属于Ⅱ-Ⅲ类水体,在支流汇入处理化指标浓度增加,浮游植物多样性指  相似文献   

4.
河流水质全球变化研究若干问题   总被引:8,自引:0,他引:8  
陈静生 《环境化学》1992,11(2):43-51
本文首先简要阐述自本世纪50年代以来全球河流水质研究与水质监测的基本情况,进而就河流水质全球变化研究中的几个难点问题进行讨论。这些问题是:1)河流水质的多样性及全球参比值问题,2)河流水质监测的发展及存在问题,3)与社会-经济发展有关的河流水质全球变化趋势分析。  相似文献   

5.
基于BP神经网络算法的密云水库水质参数反演研究   总被引:1,自引:0,他引:1  
密云水库是北京市重要的地表饮用水源地,在保障首都水源安全方面起着重要作用,而密云水库水质参数的区域监测已成为当前亟待解决的问题。为了实现密云水库水质参数大范围、实时获取,该文基于遥感和GIS技术,采用BP神经网络算法,结合地面监测数据和Landsat 8遥感影像,分别建立了反演总磷、总氮、氨氮和COD(化学需氧量)4个水质参数的BP神经网络模型,并反演了密云水库2013-2018年非结冰期主要水质参数,分析了密云水库主要水质参数的年际变化特征、季节变化特征和空间分异特征。结果表明,(1)水质参数的Landsat 8敏感波段分别为:总氮为1、4波段,氨氮为1-7波段,总磷为1、3-7波段,COD为2-5波段。(2)密云水库主要水质参数在2013-2018年总体呈下降趋势,氨氮和COD为Ⅰ类水质,总磷为Ⅱ类水质,总氮为Ⅲ类水质。(3)4个水质参数指标春季最高、秋季次之、夏季最低,总氮、总磷、氨氮和COD的春季值分别是夏季值的1.08、1.36、1.6、1.45倍。(4)密云水库不同水质参数的空间差异性较大,总体来看,水库北部和东部的4个水质参数含量相对较高,这种分布与北部和东部村庄密集以及密云水库两大入库河流有关。综上所述,基于BP神经网络算法的密云水库水质反演研究是可行的,且得到了较为可信的研究结果,该研究可为密云水库水质管理与政策制定提供重要的科学依据。  相似文献   

6.
新丰江水库水质可满足 G B3838 - 88 Ⅱ类水质要求, 其营养水平为贫中营养状态; 磷为主要污染物; 氮磷负荷均略大于可接受的纳污负荷。本文还提出了有效控制新丰江水库富营养化进程的若干建议和措施。  相似文献   

7.
小尺度流域河湖水质关联性分析   总被引:2,自引:0,他引:2  
选取巢湖潜溪河流域和六叉河流域作为江淮农业小流域代表,采用灰色关联分析(GRA)方法,对比研究小尺度流域入湖河流对河湖交汇区水质的影响.河水及河湖交汇区水质周年变化状况监测结果表明,巢湖水质1 a中富营养化最为严重时段是10-12月,营养元素N、P和溶解性金属离子Mn、Fe、Al含量也达到年内最高.河湖水质灰色关联分析结果表明,2个流域河流水质与河湖交汇区水质高度关联,灰色关联度为0.687~0.896.对于小尺度流域而言,湖泊水质对于流域河流水质变化响应迅速,农业流域面源污染对湖泊水体污染的贡献明显.  相似文献   

8.
河岸带土地利用是影响河流水质的重要因素,基于上海市2013年55个河网水质监测点10项水质指标数据,利用SOM+K-means自组织特征映射(self-organization feature mapping,SOM)神经网络,识别全市水质空间分布格局;运用冗余分析(RDA)和Spearman秩相关在不同空间尺度(100、200、500和1 000 m缓冲区)上探讨水质与河岸带土地利用的关系及尺度效应。结果表明:(1)可将上海市55个水质监测点划分为4个聚类,体现出较为明显的空间异质性,监测点分布于淀山湖、崇明岛等城市远郊地区的聚类Ⅰ水质最优,而监测点分布于苏州河沿线的聚类Ⅱ和城市近郊的聚类Ⅲ的水质较差;(2)在空间尺度上,500 m缓冲区对聚类Ⅰ、Ⅲ和Ⅳ的总解释率最强,1 000 m缓冲区对聚类Ⅱ的总解释率最强;(3)在最优空间尺度上,城镇建设用地对各聚类水质都有较高的解释率,且与大部分水质指标呈正相关。  相似文献   

9.
于2009年5月(枯水期)、8月(丰水期)、11月(平水期)对天津地区蓟运河、潮白新河、永定新河、金钟河、北塘排污河、黑猪河、海河、大沽排污河、独流减河、青静黄排水渠、子牙新河和北排水河12条主要河流的水质进行监测,并对监测数据进行主成分分析,构建水质评价指标体系,采用水质标识指数进行水质评价。结果表明,主成分分析与水质标识指数相结合的评价方法客观可靠。从时间分布来看,枯水期水质最差,58.3%的河流为劣Ⅴ类水质,部分河流已经黑臭,8月水质较好。从综合水质标识指数来看,海河以南河流污染较为严重。该地区河流NH3-N污染最为严重,其次是BOD5、CODMn和TP,属于有机型及富营养化污染。  相似文献   

10.
综合客观评价河流水质的健康及污染状况,科学分析预测水环境质量的变化趋势,对于河流水污染精准防治具有重要意义。选取绵阳市境内主要河流为研究对象,基于2014-2022年绵阳市12个水质监测断面的4项污染物指标监测数据,结合模糊综合评价法及主成分分析法对其断面水质进行评价并判断污染程度,建立带外源输入的非线性自回归(NARX)神经网络模型,预测研究区域内2025年和2030年的水质变化趋势。结果表明:1)综合不同水期来看,在枯水期,芙蓉溪仙鱼桥与梓潼垢家渡断面的水质级别分别在2015年和2016年都未能达到水质目标,满足水质功能标准的断面占12个监测断面的92%,而在平水期与丰水期各断面水质均能达到各自的标准;2)凯江老南桥、梓潼垢家渡及天仙镇大佛寺断面水质受水期影响较大,平武水文站在所选断面中总体水质较好,而芙蓉溪仙鱼桥较差;3)溶解氧(DO)、高锰酸盐指数(CODMn)、五日生化需氧量(BOD5)及氨氮(NH3-N)的实测值与预测值之间高度相关,均方误差均较小,满足水质预测的精度要求;4)从水质变化趋势来看,除天仙镇大佛寺断面2028-2030年的水质级别由2023-2027年的Ⅰ级降...  相似文献   

11.
Drastic changes in river discharge and salinity levels are threatening the phenology and morphology of the coastal mangrove forests of the Sundarbans of Bangladesh. We have used AVHRR GIMMS (1985–2006) and MODIS (2005–2010) satellite Normalized Difference Vegetation Index (NDVI) data to identify the temporal variation of the phenology of the mangroves. Linear interpolation and Fourier-based adjustment were applied to remove noise from the NDVI time series. Then linear regression analysis on a single area (8 km ? 8 km) and a composite of 36 areas for three NDVI statistics the annual minimum, annual average, and annual maximum were performed--over the time periods 1985–1990, 1990–2000, 2000–2006 and 2005–2010 to identify possible functional changes in NDVI time series around the Sundarbans. Furthermore, we used fourteen LANDSAT images spanning the period 1989–2010 to estimate the spatiotemporal rate of shoreline changes over the three time periods 1989–2000, 2000–2006, and 2006–2010. A decreasing trend in the annual minimum NDVI was observed in most of the areas of the Sundarbans for the period 1990–2000. During the years 2000–2006, the trends of the three NDVI statistics became significantly positive, indicating an improvement of the mangrove phenology. In the period 2005–2010, a decreasing trend in all the NDVI variables was again dominant. The coast underwent rapid erosion from 1989–2000 and 2006–2010. However, the rate substantially declined between 2000 and 2006, when accretion was dominant. The advent of the upstream Farakka barrage caused a significant reduction in the Ganges-Gorai River discharge and increased the salinity in and around the Sundarbans. Our study concludes that this may be responsible for the degradation of mangrove phenology and accelerated erosion in the earlier and recent periods. In the interim, 2000–2006, improved river discharge and salinity levels due to the Ganges water sharing agreement (1996) and dredging of the Gorai River bed (1998–1999) enhanced the mangrove phenology and helped the coast to gain land.  相似文献   

12.
The aim of this study was to investigate the variation of channel bed roughness in two rivers, as important parameter in hydraulic modelling especially with regard to flood control. The universities of Ghent (UG) and Antwerp (UA) are conducting scientific research in the river Aa in Belgium and the Biebrza river in Poland in order to better understand the phenomena involved and to come to a more accurate determination of the different parameters influencing flow. In this paper, the determination of the roughness coefficient ‘n’ from the Manning equation is used. This coefficient is not easy to determine and is varying constantly. It is influenced by the meandering character of the river, the bed material and the average grain size, the channel bed forms, the channel obstructions, the geometry changes between sections and the vegetation in the channel. Furthermore, due to these parameters, the roughness of the channel is not equally distributed over the channel, the banks and the floodplains. So, using literature data does not always lead to satisfactory results, due to the different situation in the field (Werner et al. J Hydrol 314:139–157, 2005). Therefore, measurements are necessary to determine the variation of the Manning coefficient. The Manning coefficient is a function of the discharge, but will also vary over the time due to the mentioned influences. In a multidisciplinary research project on the fundamental exchange processes in river ecosystems, hydraulic measurements were performed on a regular base in the river Aa. During these measurement campaigns, velocity and discharge measurements were carried out in multiple cross-sections. Once a month, the discharge and the water levels were measured at the upstream and the downstream end of the test stretch. On the river Biebrza, similar intensive measurement campaigns took place along a 6 km stretch in the upstream part of the river. An accurate determination of the Manning coefficient according a seasonal variation is an important tool in hydraulic modelling.  相似文献   

13.
《Ecological modelling》2005,184(1):55-68
One of the most important sources of pollution in coastal zones (CZ) is certainly that one produced by human activities in the associated river basin. Understanding the linkage between water quality in CZ and river catchments is important in order to better assess CZ processes and to evaluate different management options aimed at improving the coastal ecosystem state. CZ water quality targets as identified by the Water Framework Directive (EC 2000/60) require an accurate study of the effects of pollutant loads coming from river discharge.In order to evaluate the impacts of human activities in river catchments on the associated coastal zone, a sound definition for this geographic area is needed. Many definitions for this area have been proposed in different contexts. The definition is generally built upon a particular goal, and is henceforth highly variable according to the different purposes. In this paper a general methodology allowing to discern those areas of the sea that are directly influenced by fluvial discharge is presented. The methodology is based on the variation pattern of sea water characteristics, and provides a numerical evaluation of this influence. In particular an analysis based on salinity as tracer, results in a sound definition of this area. The methodology has been applied on the case study of the Po river. Due to the significant nutrient loads discharged by the river, the CZ associated with Po is affected by severe eutrophication phenomena that have important consequences on the ecosystem and on the socio-economy of the area.In order to study the impacts of nutrients loads carried by the river, a water quality model (WASP6) has been implemented. The model simulates the seasonal variability of nutrient concentrations, phytoplankton biomass and dissolved oxygen. Using the CZ model is possible to compare the effects of variations of nutrient loads on the biochemical (short term) and ecological (long term) quality of the coastal environment. This is accomplished by feeding nutrients loads forecasted for different scenarios by the catchment model (MONERIS) as forcing functions to the CZ model. This way the effect of the different catchment management scenarios are propagated to the CZ model, and the trophic conditions of the coastal ecosystem evaluated using TRIX.This study has been developed in the context of the European project EUROCAT.  相似文献   

14.
In this paper, we describe the development of a simulation framework for allocating water from different sources to meet the environmental flows of an urban river. The model permits the development of a rational balance in the utilization of storm water, reclaimed water from wastewater treatment plants, and freshwater from reservoirs with consideration of the limited capacities of different water resources. It is designed to permit the full utilization of unconventional water sources for the restoration of river water quality by increasing river flow and improving water quality. To demonstrate practical use of the model, a case study is presented in which the model was used to simulate the environmental water allocation for the Liming River in Daqing City, China, based on the three water sources mentioned above. The results demonstrate that the model provides an effective approach for helping managers allocate water to satisfy the river’s environmental water requirements.  相似文献   

15.
外源性污染对太湖梅梁湾水质影响的定量化   总被引:4,自引:0,他引:4  
通过太湖的水量水质数学模型,模拟了梅梁湾内主要的入湖污染源———直湖港、武进港和梁溪河排入的污染物质的迁移、转化规律;分析了梅梁湾中梅园、小湾里、闾江口、拖山4个监测点水质浓度受直湖港、武进港和梁溪河排污影响程度的大小;并分别建立了监测点污染物浓度与排污口排污量的响应关系曲线和响应关系表达式。通过这些结论可以方便的定量的计算出在排污口排污量发生变化的情况下监测点水质浓度的变化量,为合理控制外源污染物质的入湖量提供了技术支持。  相似文献   

16.
观音堂库区水温变化对水生态环境影响的分析   总被引:4,自引:0,他引:4  
本文用径流-库容比数法,对观音堂水库水体水温结构类型进行判断,用经验公式法和代表层水温法对观音堂水库水体水温结构和下泄水温进行了预测,预测结果表明:观音堂水库属分层型水库,在汛期表现出临时混合型的特点,水库下泄水使下游河道水温年内分布趋于均匀.这种水温变化,导致水库水质随水库深度增加而逐渐恶化,对水库下游河段水生生态系统产生不利影响。  相似文献   

17.
Many contaminants exhibit decay (radioactive decay, consumed by bacteria, heat loss or evaporation through the surface, dissolution by turbulence). For a non-symmetric river with non-reversing flow, the effects of decay are allowed for in specifying the diffusion centre, i.e. the optimal position for a steady discharge. Three families of exact solutions are presented that illustrate the effect on the diffusion centre of cross-channel variation in the decay (uniform, decreasing or increasing with depth). The diffusion centre is shifted to deeper or to shallower water accordingly as the temporal decay divided by flow speed decreases or increases with water depth.  相似文献   

18.
南京东郊典型蔬菜基地地表水环境质量的调查分析表明:(1)在当前的生产和生活条件下,地表水尚未受Pb、Cu、Zn、Cd和Cr污染,但有不同程度的氮、磷污染。(2)河流氮、磷污染比池塘严重。河流水中氨氮和水溶性磷的比例相对较高,而池塘水中硝态氮、有机氮和有机磷的比例相对较高,这种差别有助于识别地表水中氮、磷的来源。河流底泥中总氮、总磷和重金属含量(Cr除外)比塘泥高,表明河水氮、磷及重金属污染风险比池塘水高。(3)南京东郊蔬菜基地地表水中氮、磷及重金属主要来自城市生活污水的排放,其次来自蔬菜栽培中有机肥过量投入造成的流失。因此,保护城郊地表水应从城市生活污水净化和蔬菜栽培中有机肥的合理施用入手。  相似文献   

19.
Emission trading is one of the most effective alternatives to controlling water pollution. Water environmental functional zone (WEFZ) is used to determine the water quality standard and identify the zone boundary for each river or reach. In this study, a new emission trading scheme was addressed based on WEFZ, accounting for both the temporal dimension and water quality control. A temporal factor of emission trading was proposed based on variations in the environmental capacity within a year by dividing the year into three periods, including high, normal, and low periods of environmental capacity. During each period, emission trading was implemented exclusively. A water quality-control scheme was suggested based on the water quality requirement in the water functional zone, in which the water quality at the downstream boundary of the zone was required to meet the water standard following auto-purification in the stream. Two methods of calculating water quality control are addressed for point-source pollution and non-point-source pollution. The calculated temporal dimension and water quality control were located in Dongxi River of the Daning Watershed in the Three Gorges Watershed. The high period was during June, July, and August, the normal period was during April, May, September, and October, and the low period was during January, February, March, November, and December. The results from the water quality calculation demonstrated that the discharge of point-source and non-point-source pollutions led to an excess of common contaminants at the downstream boundary of WEFZ. The temporal and spatial factors above should be incorporated into the emission trading scheme based on WEFZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号