首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most regulations governing biosolids land application do not consider that phosphorus (P) solubility can vary widely among biosolids. Current regulations typically group all biosolids together in one category or group biosolids together with manures. Research has shown that not all biosolids have the same potential to affect the environment when land applied, but the database is limited. The purpose of this study was to characterize P release from several biosolids produced and/or marketed in Florida. A small soil column dynamic laboratory incubation was conducted to assess P release potential. Eleven biosolids and a mineral fertilizer (triple super phosphate) were individually mixed with a typical low-P sorbing Florida soil (Immokalee fine sand) at 56 and 224 kg P ha(-1). Columns were periodically leached over 5.5 mo to attain 60 mL (1/2 pore volume) of drainage in each leaching. Soluble reactive P was determined and summed over the eight leachings to represent total P source release. Cumulative P release (as a percentage of P applied) was greatest from biological P removal (BPR) and BPR-like biosolids and least from heat-dried materials. Phosphorus release from biosolids depends on biosolids treatment type (digestion) and P chemistry, suggesting that biosolids regulations must account for differences in P lability to accurately gauge environmental risk.  相似文献   

2.
Nutrient removal by constructed wetlands can decline over time due to the accumulation of organic matter. A prescribed burn is one of many management strategies used to remove detritus in macrophyte-dominated systems. We quantified the short-term effects on effluent water quality and the amount of aboveground detritus removed from a prescribed burn event. Surface water outflow concentrations were approximately three times higher for P and 1.5 times higher for total Kjeldhal nitrogen (TKN) following the burn event when compared to the control. The length of time over which the fire effect was significant (P < 0.05), 3 d for TKN and up to 23 d for P fractions. Over time, the concentration of soluble reactive phosphorus (SRP) in the effluent decreased, but was compensated with increases in dissolved organic phosphorus (DOP) and particulate phosphorus (PP), such that net total P remained the same. Total aboveground biomass decreased by 68.5% as a result of the burn, however, much of the live vegetation was converted to standing dead material. These results demonstrate that a prescribed burn can significantly decrease the amount of senescent organic matter in a constructed wetland. However, short-term nutrient releases following the burn could increase effluent nutrient concentrations. Therefore, management strategies should include hydraulically isolating the burned area immediately following the burn event to prevent nutrient export.  相似文献   

3.
Dissolved phosphorus (DP) can be released from wetlands as a result of flooding or shifts in water column concentrations. Our objectives were to determine the long-term (1460 d) DP retention and release characteristics of an in-stream wetland, and to evaluate how these characteristics respond to flooding, draining, and changes in DP concentrations. The studied in-stream wetland drains an agriculturally intensive subwatershed in the North Carolina Coastal Plain region. The wetland's DP retention and release characteristics were evaluated by measuring inflow and outflow DP concentrations, DP mass balance, and DP movement across the sediment-water column interface. Phosphorus sorption isotherms were measured to determine the sediment's equilibria P concentration (EPCo), and passive samplers were used to measure sediment pore water DP concentrations. Initially, the in-stream wetland was undersized (0.31 ha) and released 1.5 kg of DP. Increasing the in-stream wetland area to 0.67 ha by flooding resulted in more DP retention (28 kg) and low outflow DP concentrations. Draining the in-stream wetland from 0.67 to 0.33 ha caused the release of stored DP (12.1 kg). Shifts both in sediment pore water DP concentrations and sediment EPCo values corroborate the release of stored DP. Reflooding the wetland from 0.33 to 0.85 ha caused additional release of stored DP into the outflowing stream (10.9 kg). We conclude that for a time period, this in-stream wetland did provide DP retention. During other time periods, DP was released due to changes in wetland area, rainfall, and DP concentrations.  相似文献   

4.
This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. The trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e.,>10 yr after construction).  相似文献   

5.
Long-term depositions of animal manures affect P dynamics in soils and can pose environmental risks associated with P losses. Laboratory studies were done on P solubility characteristics in a manure-impacted Immokalee soil (sandy, siliceous, hyperthermic Arenic Alaquod) and the effectiveness of water treatment residual (WTR) in controlling P leaching. Soil samples with contrasting initial total P concentrations were prepared by mixing samples of a manure-impacted surface A horizon and a minimally P-impacted E horizon. Effects of mixing various ratios of A and E horizons, WTR rates (0, 25, 50, and 100 g kg(-1)), and depths of WTR incorporation (mixed throughout the soil column or partially incorporated) on P leaching were determined. Between 62 and 77% of total P was released from the soil mixes by successive water extractions, suggesting a considerable buffering capacity of this manure-impacted soil to resupply P into solution. Between 224 and 408 mg kg(-1) P were leached during the 36-wk leaching period in the absence of WTR. Mixing WTRs with soil reduced soluble P concentration in leachates by as much as 99.8% compared with samples without WTR. Thoroughly mixing WTR with the entire soil column (15 cm) was much more efficient than mixing WTR with only the top 7.5 cm of soil. Calcium- and Mg-P forms appear to control P release in soils without WTR, whereas sorption-desorption reactions probably determine P leaching in WTR-treated samples. Soil P distribution in various chemical forms was affected by WTR additions. Data suggest that WTR-immobilized P is stable in the long term.  相似文献   

6.
Phosphorus (P) in irrigation runoff may enrich offsite water bodies and streams and be influenced by irrigation water quality and antecedent soil surface conditions. Runoff, soil loss, and P fractions in runoff using reverse osmosis (RO) water or mixed RO and well water (RO/ Tap) were studied in a laboratory sprinkler study to evaluate water source effects on P transport. A top- or subsoil Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid), either amended or not amended with manure and/or with cheese whey, with Olsen P from 20 to 141 mg kg(-1) and lime from 108 to 243 g kg(-1), was placed in 1.5 x 1.2 x 0.2-m-deep containers with 2.4% slope and irrigated three times from a 3-m height for 15 min, applying 20 mm of water. The first irrigation was on a dry loose surface, the second on a wet surface, and the third on a dry crusted surface. Surface (ca. 2 cm) soil samples, prior to the first irrigation, were analyzed for Olsen P, water-soluble P (Pws), and iron-oxide impregnated paper-extractable P (FeO-P) analyses. Following each irrigation we determined runoff, sediment, dissolved reactive phosphorus (DRP) in a 0.45-microm filtered sample, and FeO-P and total P in unfiltered samples. Soil surface conditions had no effect on P runoff relationships. Water source had no significant effect on the relationship between DRP or FeO-P runoff and soil test P, except for DRP in RO runoff versus water-soluble soil P (r2 = 0.90). Total P in RO runoff versus soil P were not related; but weakly correlated for RO/Tap (r2 < 0.50). Water source and soil surface conditions had little or no effect on P runoff from this calcareous soil.  相似文献   

7.
Phosphorus exchangeability and leaching losses from two grassland soils   总被引:1,自引:0,他引:1  
Although phosphate phosphorus (P) is strongly sorbed in many soils, it may be quickly transported through the soil by preferential flow. Under flood irrigation, preferential flow is especially pronounced and associated solute losses may be important. Phosphorus losses induced by flood irrigation were investigated in a lysimeter study. Detailed soil chemical analyses revealed that P was very mobile in the topsoil, but the higher P-fixing capacity of the subsoil appeared to restrict P mobility. Application of a dye tracer enabled preferential flow pathways to be identified. Soil sampling according to dye staining patterns revealed that exchangeable P was significantly greater in preferential flow areas as compared with the unstained soil matrix. This could be partly attributed to the accumulation of organic carbon and P, together with enhanced leaching of Al- and Fe-oxides in the preferential flow areas, which resulted in reduced P sorption. The irrigation water caused a rapid hydrologic response by displacement of resident water from the subsoil. Despite the occurrence of preferential flow, most of the outflowing water was resident soil water and very low in P. In these soils the occurrence of preferential flow per se is not sufficient to cause large P losses even if the topsoil is rich in P. It appears that the P was retained in lower parts of the soil profile characterized by a very high P-fixing capacity. This study demonstrates the risks associated with assessing potential P losses on the basis of P mobility in the topsoil alone.  相似文献   

8.
Constructed wetlands are one method under investigation for the remediation of trace element-contaminated agricultural drainwater. A greater understanding of the retention of trace elements by the bulk soil and soil constituents is necessary for their safe and effective use. To determine the capacity of soil, calcite, and goethite-coated quartz sand for retention of As, Mo, and V under field conditions, an in situ method was used whereby permeable bags containing those minerals were placed near the sediment surface of a flow-through constructed wetland for 3 or 12 mo. Accumulations of As, Mo, and V occurred on goethite-coated sand. Concentrations of Mo on goethite-coated sand were much higher in samples from a wetland cell with a water depth of 15 cm (38.23 +/- 7.27 mg kg(-1)) compared with those from a cell with a water depth of 3 cm (8.30 +/- 1.45 mg kg(-1)). Calcite sorbed no As and low amounts of Mo and V, indicating that it is not an important sink for those elements under these conditions. In soil bags, total As and V concentrations showed little change over 12 mo. Molybdenum accumulated in the soil bags, resulting in total concentrations (12 mo) of 27.22 +/- 2.69 mg kg(-1) and 11.42 +/- 1.35 mg kg(-1) at water depths of 15 and 3 cm, respectively. Nearly half of the Mo accumulation on soil became water soluble after air-drying. This has important implications for systems that may undergo changes in redox status, possibly resulting in large fluxes of water-soluble Mo.  相似文献   

9.
Phosphorus (P) inputs to sewage treatment works (STW) come from a variety of sources and filtration of treated wastewater prior to discharge into receiving waters is a common practice. This means P in treated wastewaters may be present in forms that are potentially more bioavailable and mobile. We conducted a 2-year study to determine P species up and downstream of two STW outfalls into two tributaries of the River Thames. Downstream of the outfalls, P concentrations in both rivers were frequently greater by an order of magnitude for all species of P. A high proportion of total P (TP) in the downstream waters was determined as dissolved, which was largely comprised of soluble reactive P (SRP) - considered as the most bioavailable P species. Furthermore no significant difference in SRP was found in receiving waters passed through 0.45 and 0.10 μm filters. This means that P from STWs occurs in <0.1 μm fraction size, which will not readily settle to the channel bed and is more easily assimilated by biota. This distinguishes STW inputs from agricultural runoff where a high proportion of P occurs as particulate P which is both less bioavailable and more likely to settle to the channel bed. This implies that STWs derived P is likely to have a greater adverse impact on the receiving river than agricultural runoff.  相似文献   

10.
Lead poisoning of waterfowl from direct ingestion of wetland mine tailings has been reported at the Coeur d'Alene River basin in Idaho. A greenhouse study was conducted to evaluate the effects of surface applications of amendments on lead bioavailability in the tailings. Treatments included sediment only, and sediment with three different surface amendments: (i) biosolids compost plus wood ash, (ii) compost + wood ash + a low SO4(2-) addition as K2SO4, and (iii) compost + wood ash + a high SO4(2-) addition. Measured variables included growth and tissue Pb, Zn, and Cd concentration of arrowhead (Sagittaria latifolia Willd.) and cattail (Typha latifolia L.) and soil pH, redox potential (Eh), pore water Pb, Pb speciation by X-ray absorption spectroscopy, and in vitro Pb bioavailability. The compost + ash amendment alleviated phytotoxicity for both plant species. Bioavailability of Pb as measured by a rapid in vitro extract decreased by 24 to 34% (over control) in the tailings directly below the amendment layer in the compost + SO4 treatments. The ratio of acid volatile sulfide (AVS) to simultaneously extracted metals (SEM) also indicated a reduction in Pb bioavailability (1:40 control, 1:20 compost, 1:8 compost + low SO4, and 1:3 compost + high SO4). Extended X-ray adsorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopy data indicated that lead sulfide was greater after 99 d in the treatments that included additions of sulfate. These results indicated that, under reducing conditions, surface amendments of compost + wood ash (with or without sulfate) decreased the bioavailability of Pb in metal-contaminated mine tailings.  相似文献   

11.
A multitrophic outdoor mesocosm system was used to mimic a wetland ecosystem and to investigate the effects of glyphosate and two herbicide mixtures on wetland microbial communities. The glyphosate concentration used was 1000 times the environmentally relevant concentration (ERC). One herbicide mixture consisted of six auxin-type herbicides (2,4-D, MCPA, clopyralid, dicamba, dichlorprop, mecoprop), each at 1000 times the ERC. The second mixture was comprised of eight herbicides, including the six auxin-type herbicides as well as bromoxynil and glyphosate. For this mixture, a dose-response approach was used to treat mesocosms with the ERCs of each herbicide as the base concentration. Algal biomass and production and bacterial production and numbers for pelagic and attached communities were measured at different times over a 22-d period. The experimental results indicate that the eight-herbicide mixture, even at low concentrations, produced negative effects on microbial communities. Glyphosate on its own suppressed algal biomass and production for the duration of the study in pelagic and biofilm communities. Algal biomass and production, although initially depressed in the auxin-type herbicide treatment, were stimulated from Day 9 until experiment end. Due to their similar modes of action, the effects of this herbicide mixture appear to be a result of concentration addition. Such negative effects, however, were brief, and microbial communities recovered from herbicide exposure. Based on evidence presented in this study, it appears that glyphosate has a higher potential to inhibit primary production and chlorophyll content in pelagic and attached wetland algal communities than the auxin-type herbicide mixture.  相似文献   

12.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1).  相似文献   

13.
This study was undertaken to determine the fate of As, Mo, and V (trace elements, TEs) in the sediments of a constructed wetland in use for the remediation of potentially toxic trace element-contaminated agricultural drainwater. After three years of wetland operation, sediment cores were collected to determine changes in TE concentrations as a function of depth and the effects of varying water column depth. All TE concentrations were highest in the top 2 to 4 cm and decreased with depth. Molybdenum accumulated in the wetland sediments, up to levels of 32.5 +/- 4.6, 30.2 +/- 8.9, and 59.3 +/- 26.1 mg kg(-1) in the top 1 cm of sediment at water depths of 15, 30, and 60 cm, respectively. In the top 2 cm of sediment, As accumulated (28.2 +/- 3.0 mg kg(-1)) only at the 60-cm water depth. Below 2 cm, as much as 10 mg kg(-1) of As was lost from the sediment at all water depths. In most cases, V concentrations decreased in the sediment. In this wetland system, the lowest redox potentials were found near the sediment surface and increased with depth. Thus, in general As, Mo, and V concentrations in the sediment were highest under more reducing conditions and lowest under more oxidizing conditions. Most of the accumulated Mo (73%) became water soluble on drying of samples. This has important implications for systems undergoing changes in redox status; for instance, if these wetland sediments are dried, potentially large amounts of Mo may be solubilized.  相似文献   

14.
Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P forms often dominate. We investigated the mobility of both inorganic and organic P in profile samples from a noncalcareous sandy soil treated for 11 yr with excessive amounts of pig slurry, poultry manure, or poultry manure mixed with litter. Solution 31P nuclear magnetic resonance spectroscopy was used to characterize NaOH-EDTA-extractable forms of P, corresponding to 64 to 93% of the total P concentration in soil. Orthophosphate and orthophosphate monoesters were the main P forms detected in the NaOH-EDTA extracts. A strong accumulation of orthophosphate monoesters was found in the upper layers of the manure-treated soils. For orthophosphate, however, increased concentrations were found down to the 40- to 50-cm soil layers, indicating a strong downward movement of this P form. This was ascribed to the strong retention of orthophosphate monoesters by the solid phase of the soil, preventing orthophosphate sorption and facilitating downward movement of orthophosphate. Alternatively, mineralization of organic P in the upper layers of the manure-treated soils may have generated orthophosphate, which could have contributed to the downward movement of the latter. Leaching of inorganic P should thus be considered for the assessment and the future management of the long-term risk of P loss from soils receiving large amounts of manure.  相似文献   

15.
Fire behaviour under experimental conditions is described in nine Mediterranean gorse shrublands ranging from 3-12 years of age with different fuel loads. Significant differences in the fire-line intensity, fuel load and rate of fire spread have been found to be related to the stage of development of the communities. Fire spread is correlated with fuel moisture using multiple regression techniques. Differences in fuel moisture between mature and young communities under moderate weather conditions have been found. The lower moisture content identified in the mature shrubland is due both to the decreasing moisture content of senescent shrubland in some species, mainly in live fractions of Ulex parviflorus Pour. fuel, and to a substantial increase in dead fuel fractions with low percentages of moisture content. The result is that the older the shrubland is, the greater will be the decrease in the total moisture content of the vegetation. In these moderate weather conditions, the fire intensity of the mature community was as high as the maximum intensity recommended for prescribed fires. This fact seems to indicate that, even under moderate conditions, prescribed burning as an alternative management tool in the mature shrubland must always take into account fuel control; on the other hand, this technique could be applied more easily when the shrubland is at an intermediate growth stage (4-5 years of age). Therefore, more frequent low-intensity prescribed fires are indicated to abate the risk of catastrophic fire.  相似文献   

16.
Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.  相似文献   

17.
Forest fires are common in Mediterranean environments and may become increasingly more frequent as the climate changes. Destruction of the forest cover and litter layer leads to greater overland flow and increased erosion rates. The greatest risk occurs during the first rainstorms following a major fire, so local authorities must act quickly to put erosion control methods in place in order to avoid excessive post-fire sediment loads in river channels. Deciding on which methods to use requires accurate knowledge of their impact on sediment load and an estimate of their cost efficiency. The objective of this study was to evaluate the efficiency of Log Debris Dams (LDDs) and a sedimentation basin for their effectiveness in trapping sediments. Paired sub-catchments were studied to quantify the amount of sediments trapped in stream channels by a series of LDDs and a sedimentation basin. Cost efficiency was evaluated for each of the measures as a function of the cost per unit volume of sediments trapped. In addition, grain size analyses were performed to characterise the nature of the sediments trapped. A third sediment trapping method, Log Erosion Barriers (LEBs) was evaluated more superficially than the first two and conclusions regarding this method are tentative. LDDs trapped a mean volume of 1.57 m3 per unit (median = 1.28 m3); mean LDD height was 105.4 cm (std. dev. = 21.9 cm), and mean height of trapped sediments was only 50.0 cm (std. dev. = 22.9 cm), showing that the traps were only half filled. Sediment height was limited by the presence of gaps between logs or branches that allowed runoff to flow through. Comparison of the textural characteristics of slope and trapped sediments showed distinct sorting: particles greater than 20 mm were not mobilised from the slopes during the study period, sediments in the medium to coarse sand size fractions were trapped preferentially by the LDDs, and sediments in the sedimentation basin were enriched by clay and silt sized (<0.050 mm) particles as coarser sediments were trapped upstream by the LDDs. Cost efficiency of LDDs was estimated at about 143 € m−3 for the LDDs and 217 € m−3 for the sedimentation basin at the time of sampling. The LDDs are therefore a cost effective method of trapping sediments, but they can only be used when pine trees or straight-trunked trees are locally available. In this case, they should be combined with LEBs, which had a cost efficiency estimated at about 250 € m−3. Installation of the LEBs had not been optimised and they have the advantage of trapping sediments on the slopes where they can continue to play an ecological role, so this method can give better results with more care. Sedimentation basins can be emptied if necessary and are useful in areas where pine trees are not available and where the site can be secured.  相似文献   

18.
Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method for restoring fire in shortgrass prairie ecosystems where fire has been excluded for a prolonged time period.  相似文献   

19.
The potential of rhizosphere microbes isolated from common reed [Phragmites australis (Cav.) Trin. ex Steud] plants grown in a subsurface-flow constructed wetland to biomethylate selenate or selenite was studied in liquid cultures under controlled conditions. Total mean percentages of volatilized Se from half-strength Hoagland culture solutions (low C content) supplemented with selenate or selenite and inoculated with cultured rhizosphere microbes after 15 d of incubation were 7.9 and 49.1%, respectively. There was a relative best fit (r = 0.87) between total number of rhizosphere and cultured microbes and the percentage of volatilized Se in Hoagland solution after 15 d of incubation. However, when the same microbes were cultured in tryptic soybean broth (TSB) medium (high C content), the percentages of volatilized Se from selenate and selenite were 1.3 and 1.9%, respectively. The volatilization percentages of Se from selenate or selenite in culture solutions inoculated with rhizosphere suspension instead of cultured rhizosphere microbes were very low (1.2-3.0%) in both cultivation media. In all experiments, selenite was volatilized significantly (p < 0.05) in higher amounts by cultured rhizosphere microbes after 15 d of incubation compared with selenate. Dissolved biomethylated dimethylselenide (DMSe) in water samples taken from the subsurface-flow bed was determined by purging with helium. The DMSe in water samples was indirectly detected up to 2.4 microg Se L(-1), which indicates that part of the produced DMSe was dissolved in the matrix before being released into the atmosphere. Our results show that rhizosphere microbes isolated from common reed plants have a high potential of Se biomethylation and volatilization from selenate and selenite.  相似文献   

20.
A model for predicting community mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem is presented. It applies an algorithm that delineates the size and shape of each patch from grid-based input data and calculates standard diversity measures for the entire mosaic of community patches and their included animal species. The user can print these diversity calculations, maps of the current community-type-age-class mosaic, and maps of habitat utilization by each animal species. Furthermore, the user can print estimates of changes in each resulting from natural disturbance. Although data and resolution level independent, the model is demonstrated and tested with data from the Lewis and Clark National Forest in Montana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号