首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Four higher plant species (Avena sativa L., oat; Lepidium sativum L., cress; Brassica rapa Metzg., turnip; and Phaseolus vulgaris L., bush bean) and 15 soils including five mineral oil-contaminated soils were tested to assess a soil-based continuous seed germination and early seedling growth bioassay. Seed germination was recorded and the shoot biomass of 14-day seedlings measured. An automatic self-watering system was compared with the daily hand watering. Results obtained from this study show that the self-watering system had minor effects on both seed germination and early seedling growth, and that soil nutrient status rather than soil texture significantly affected both seedling emergence and shoot biomass. Proportional dilution of suspicious samples from primary tests with an appropriate control soil is recommended for secondary tests. Shoot biomass is a more sensitive measurement endpoint than seed germination. Bush bean should not be recommended for use due to its low sensitivity to mineral oil and poor germination in soil.  相似文献   

2.
The phytoextraction process was conducted under laboratory conditions with the use of garden cress plants (Lepidium sativum). The experiment was carried out in a model soil, which was characterized before conducting the process. Inorganic forms of mercury (HgCl(2), HgSO(4), Hg(NO(3))(2)) were used for contamination of the soil. The phytoextraction process was conducted after EDTA application to the soil and after urease application. Also the influence of simultaneous addition of ethylenediaminetetraacetic acid (EDTA) and urease into the soil on phytoextraction process was measured. In all variants of phytoextraction process the total mercury concentrations in roots, stems and leaves of garden cress were determined. The result showed that garden cress accumulated mercury from soil. The overall maximum concentration of mercury in its compounds was found in roots of the plant. In all cases, before addition of urease and EDTA, the translocation process and distribution of mercury in the plant tissues were limited. The addition of urease caused an increase of enzyme activity in the soil and at the same time caused an increase of mercury concentration in plant tissues. Application of EDTA increased solubility of mercury and caused an increase of metal accumulation by plants. After simultaneous addition of EDTA and urease into the soil garden cress accumulated about 20% of total mercury concentration in the soil. Most of mercury compounds were accumulated in leaves and stems of the plants (46.0-56.9% of total mercury concentration in the plant tissues).  相似文献   

3.
Peat-based growing media are not ecologically sustainable and peat extraction threatens sensitive peatland ecosystem. In this study, olive-stone waste (OSW) and paper waste (PW) were used in different ratios—as growing media—for ornamental crop production, as peat (P) substitutes. Marigold (Calendula officinalis L.), petunia (Petunia x hybrita L.) and matthiola (Matthiola incana L.) plants were grown in (1) P (100%), (2) P:OSW (90%:10%), (3) P:OSW (70%:30%), and (4) P:OSW:PW (60%:20%:20%). The physicochemical properties of these substrates and the effects on plant growth were determined. The addition of 10–30% OSW into the substrate increased marigold height compared to plants grown in 100% peat. No differences in plant size, plant biomass (leaves and flowers), and dry matter content were found. Adding PW, in combination with OSW, maintained marigold height and total number of flowers produced to similar levels as in plants grown in 100% peat. In matthiola, adding 30% OSW into the substrate reduced plant size and fresh weight, but not plant height. No differences were observed when plants grew in lower OSW (i.e., 10%) content. Petunia’s height, its total number of flowers and flower earliness (flower opening) were increased in the presence of OSW compared to the plants grown in 100% peat. The addition of OSW did not affect petunia’s size and fresh weight among treatments. The addition of PW suppressed several plant growth-related parameters for both matthiola and petunia. The insertion of OSW did not change leaf chlorophyll content whereas the presence of PW decreased chlorophylls for marigold, petunia, and matthiola. Both OSW and PW altered the content of total phenolics and antioxidant capacity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) in leaves and flowers for marigold and petunia. Both 30% OSW and PW increased antioxidative enzyme metabolism due to the increased damage index and lipid peroxidation observed in plants. Leaf N and P content decreased in PW-based media, while matthiola displayed visual phytotoxicity symptoms when PW was added into the substrate. The present work indicates that up to 30% of OSW can replace peat for marigold and petunia growing and only up to 10% of OSW for matthiola, while the addition of PW on top of OSW is not recommended, so further research is needed.  相似文献   

4.
Environmental Science and Pollution Research - The aim of this study was to investigate the uptake of four beta-blockers by the model plant Lepidium sativum (garden cress) and their possible...  相似文献   

5.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

6.
The presence of heavy metals in the sludges produced in wastewater treatment plants restricts their use for agricultural purposes. This study compares different types of sludges (aerobic, anaerobic, unstabilised and sludge from a waste stabilisation pond) in order to assess the extractability of heavy metals using simple extraction, water and DTPA. The stabilisation treatment undergone by the sludges influenced the heavy metals extractability. The least mineralised sludges (unstabilised and aerobic) showed higher metal extractability. The sewage sludges were subjected to chemical characterisation and toxicity testing (ecotoxicity and phytotoxicity assays) in absence of substrate, to provide a preliminary assessment of their suitability for land application. The ecotoxicity assays confirmed that no sludge constituted a hazardous waste. The sludge extracts had significant adverse effect on the germination index (GI) of barley (Hordeum vulgare L.) and cress (Lepidium sativum L.), a fact which indicates that some characteristics affected root growth.  相似文献   

7.
Biochemical and physiological experiments were conducted on pea plants (Pisum sativum) continuously exposed in growth chambers to SO2 gas for 18 days. S02 gas concentrations were 0.1, 0.15, and 0.25 ppm. In plants exposed to 0.1 and 0.15 ppm it was clearly demonstrated that there was a greater accumulation of inorganic sulfur, a reduced buffer capacity of the cells relative to H-ions, and a stimulation of glutamate dehydrogenase activity. The only macroscopic symptom seen was slight chlorosis of the older leaves. There was only a slight decrease in fresh and dry weights of these plants compared to the control plants whereas in the group of plants exposed to 0.25 ppm SO2 foliage necrosis was considerable. In addition, there was a marked reduction in the fresh and dry weights of the latter plants. However, the relationship among accumulated inorganic sulfur, reduced buffer capacity, and increased glutamate dehydrogenase activity as seen for the lower S02 concentrations was close. Accordingly, if might be possible to use these three parameters to diagnose S02 injury before any significant symptoms appear. In the case of severe SO2 injury there was a marked increase in glutamine and ammonia concentrations suggesting that these factors in addition to the above could be used in diagnosing severe SO2 injury. There was no significant difference between plants treated with 0.1 or 0.15 ppm SO2 and control plants in the contents of K, Ca, P, and N fractions. Therefore, these factors would not be useful in the early detection of SO2 injury.  相似文献   

8.
Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 g m(-3) in 1982 and 15.6 g m(-3) in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.  相似文献   

9.
Uptake and metabolisation of arsenic as a function of both the plant type and the chemical form of arsenic were examined. For this purpose two different plant species (Silene vulgaris and Plantago major) were selected that differed in their vitality and accumulation behaviour on arsenic-loaded substrates. The plants were cultivated on soil and irrigated with aqueous solutions of an inorganic arsenic compound (arsenious acid) and an organic compound (dimethylarsinate). The arsenic species accumulated in the parts of the plants above ground were extracted by PLE and determined using IC-ICP-MS. The concentrations and metabolisation products of arsenic found in the extracts indicate different mechanisms of arsenic uptake and transformation in both angiosperms. The arsenic species pattern showed that S. vulgaris was more arsenic--tolerable than P. major which is attributed to a low arsenate to arsenite concentration ratio in the plant compartments. S. vulgaris was also able to demethylate and reduce dimethylarsinate to form arsenite in a high extent. P. major accumulated only eight times lower concentration of arsenic, and the arsenate to arsenite concentration ratio shifted to higher values. Metabolisation products of dimethylarsinate did not occur under the present experimental conditions. The vitality of the angiosperms seems to be very dependent on the ability of the plant to reduce arsenate to arsenite.  相似文献   

10.
The effect of both increased concentrations (0.01 and 1 mg l(-1)) of fluoranthene (FLT) and the duration of exposure (18 and 25 days) on the growth and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. FLT concentration in roots and shoot of pea plants was also determined. The obtained results demonstrated that the higher concentration of FLT (1 mg l(-1)) significantly inhibited the growth of the pea plants after 25 days of the application, also affected the content of photosynthetic pigments (chlorophyll a, b and carotenoids), and the primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F(0) values and the decrease of F(V)/F(M) and Phi(II) values was recorded. The Hill reaction of isolated chloroplasts of pea plants was significantly inhibited after 25 days by presence of FLT (0.01 and 1 mg l(-1)) in nutrient solution, while after 18 days no significant response of Hill reaction activity was recorded. The fluoranthene content in roots and shoot of pea plants increased with increasing FLT concentration in the environment and the substantial accumulation of FLT was observed in the roots.  相似文献   

11.
Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS   总被引:43,自引:0,他引:43  
Luo C  Shen Z  Li X 《Chemosphere》2005,59(1):1-11
Chemically enhanced phytoextraction has been proposed as an effective approach to removing heavy metals from contaminated soil through the use of high biomass plants. Using pot experiments, the effects of the application of EDTA, EDDS and citric acid on the uptake of Cu, Pb, Zn and Cd by corn (Zea mays L. cv. Nongda 108) and bean (Phaseolus vulgaris L. white bean) plants were studied. The results showed that EDDS was more effective than EDTA at increasing the concentration of Cu in corn and beans. The application of 5 mmol kg-1 soil EDDS to soil significantly increased concentrations of Cu in shoots, with maximum levels of 2060 and 5130 mg kg-1 DW in corn and beans, respectively, which were 45- and 135-fold higher than that in the corresponding control plants to which chelate had not been applied. Concentrations of Zn in shoots were also higher in the plants treated with EDDS than in those treated with EDTA. For Pb and Cd, EDDS was less effective than EDTA. The maximum Cu phytoextraction was found with the EDDS treatment. The application of EDTA and EDDS also significantly increased the shoot-to-root ratios of the concentrations of Cu, Pb, Zn and Cd in both plant species. The results of metal extraction with chelates showed that EDDS was more efficient at solubilizing Cu and Zn than EDTA, and that EDTA was better at solubilizing Pb and Cd than EDDS.  相似文献   

12.
The effects of cyanobacteria aqueous extracts containing Microcystin-LR (MC-LR) on the seed germination and growth of Pisum sativum, Lens esculenta, Zea mays and Triticum durum were investigated. Experiments were carried out on a range of doses of the extract (equivalent to 0, 1.6, 2.9, 5.8, 8.7 and 11.6 mu g MC-LR/mL). The results confirm that these plants were sensitive to cell-free extracts of a toxic Microcystis and that germination inhibition was dose dependent. One-way analysis of variance (ANOVA) showed that P. sativum is the most sensitive tested species with a 97% germination rate reduction and L. esculenta was the most resistant. At the 8th day, the exposure to the microcystins (MC) resulted in a significant decrease of plant epicotyls length, roots length and a net inhibition of lateral root formation. It is concluded that MC could affect also terrestrial plants seedling germination and growth. Therefore, the use of water for irrigation contaminated by MC could exert negative biochemical effects on seed and plant metabolism which might influence the agricultural crops.  相似文献   

13.
Data from four crop yield-loss field trials were examined to determine if analysis using an imposed phenological weighting function based on seasonal growth stage would provide a more accurate indication of impact of ozone exposure. Alfalfa (Medicago sativa L. cv. Moapa 69), dry bean (Phaseolus vulgaris L. cv. California Dark Red kidney), fresh market and processing tomato (Lycopersicon esculentum Mill. cv. 6718 VF and VF-145-B7879, respectively) were grown at 9-11 ambient field plots within southern California comprising an ambient gradient of ozone. The growing season for each crop was artificially divided into 'quarters' composed of equal numbers of whole days and roughly corresponding to specific growth stages. Ozone exposure was calculated for each of these 'quarters' and regressed against final crop yield using 163 different exposure statistics. Weighting functions were developed using reciprocal residual mean square (1/RMS) or percentage of the best 100 exposure statistics of the 163 tested (TOP100) for each of the quarters. The third quarter of the alfalfa season was clearly most responsive to ozone as measured by both of the weighting functions. Third quarter ozone was also weighted highest by both weighting functions for dry bean. Fresh market and processing tomato were each influenced the greatest by second quartero zone as demonstrated by both weighting functions. The occurrence of ozone during physiologically important events (flowering and initial fruit set in second quarter for tomato; pod development in third quarter for dry bean) appeared to influence the yield of these crops the greatest. Growth-stage-dependent phenological weighting of pollutant exposure may result in more effective predictions of levels of ozone exposure resulting in yield reductions.  相似文献   

14.
Highland (altitude 1600 m above sea level) and lowland (altitude -2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

15.
Pollutant-removal efficiency of certain macrophytes and algae, such as Eichhornia crassipes, Microcystis aeruginosa, Scenedesmus falcatus, Chlorella vulgaris and Chlamydomonas mirabilis, has been tested in laboratory conditions to evaluate their potential role in wastewater treatment. Sewage of Varanasi city, mixed with the effluents of about 1200 small-scale industries, was used for the tests. The investigation was performed in three stages i.e. a water hyacinth culture followed by an algal culture, and finally a second water hyacinth culture. For the first water hyacinth culture, 10 water hyacinth plants were grown in a tank of wastewater with 15 days' retention time. In the second stage, algal species were cultured in the treated wastewater for 5 days, whilst in the third stage, water hyacinth plants were again grown for further treatment of the wastewater for 9 days. This three-stage aquaculture resulted in very high reductions of BOD (96.9%), suspended solids (78.1%), total alkalinity (74.6%), PO(4)-P (89.2%), NO(3)-N (81.7%), acidity (73.3%), NH(4)-N (95.1%), COD (77.9%), hardness (68.6%) and coliform bacteria (99.2%). An increase in the concentration of dissolved oxygen (70%) was also observed.  相似文献   

16.
Cayuela ML  Millner P  Slovin J  Roig A 《Chemosphere》2007,68(10):1985-1991
Two-phase olive mill waste (TPOMW) is considered the main problem confronting the modern oil extraction and processing industry. Composting has been recently proposed as a suitable method to treat TPOMW so that it is suitable for use in agriculture. In the work reported here, the Lemna gibba bioassay was tested to assess the toxicity of TPOMW before and during the composting process. The method was compared with the Lepidium sativum bioassay and with other chemical maturity indices traditionally reported in the literature. The L. gibba test proved to be a simple, sensitive, and accurate method to evaluate toxicity before and during the composting of TPOMW. Plant growth response was measured by two methods: counting the number of fronds (leaves) and measuring total frond area (TFA) with image analysis software. Compared to the counting of fronds (L. gibba) or seeds (L. sativum), the use of area-measuring software permitted a very rapid, unbiased and easy way of analysing the toxicity of TPOMW before and during composting. Although the accuracy of the frond count method was similar to the traditional cress seed test, data analysis showed that the TFA measurement method was statistically more accurate (significantly lower variance) than the frond count approach. Highly significant correlations were found between TFA and some important maturation indices commonly reported in literature indicating that the L. gibba bioassay can be a useful tool to determine the degree of maturity of TPOMW composts.  相似文献   

17.

Under arid and semi-arid conditions, direct application of phosphate rock (PR) as a source of phosphorus (P) for crop production is likely influenced by agricultural practices and soil properties. Different approaches could be used to improve the agronomic efficiency of low-grade PR over a wider range of soils and crops. In this study, biological, physical, and chemical treatments of low-grade Moroccan PR were investigated and compared through agronomic trials on faba bean grown under alkaline soil conditions. The physical treatment was based on blending PR with triple superphosphate (TSP) at 75:25 and 50:50 ratios, the biological treatments involved co-application of PR with compost at 50:50 ratio and phospho-compost elaborated from PR (20%), sewage sludge (46%), and wheat residues (34%), while the chemical treatment was obtained by a 30% acidulation of PR by phosphoric acid. Control treatments consisting of zero P application (control), PR alone, and TSP alone were considered to assess the effectiveness of the abovementioned techniques to improve PR agronomic efficiency. A pot experiment was conducted in sandy soil (Jorf Lasfar, central Morocco) for 60 days in a completely randomized design considering eight treatments. All treatments, except the control, were amended with 52 mg kg?1 of P from different PR-based fertilizers before sowing. At the flowering stage (60-day-old plants), results indicated that all PR treatments significantly improved plant growth, root nodulation, and nutrient uptake compared to the control. The relative agronomic efficiency of pretreated PR was significantly higher with phospho-compost treatment (86%) than the partially acidulated PR (78%) or the PR/TSP blend 50:50 (64%). Likewise, P uptake, P use efficiency, number of root nodules, and N uptake all were improved under PR treatments. Our finding revealed that the biological technique based on phospho-compost yielded better compared to chemical and physical treatments.

  相似文献   

18.
The main objective of this study was to evaluate whether arsenic accumulated in the edible pods and seeds of Phaseolus vulgaris, cv. Helda, above the Spanish maximum recommended concentration for food crops, 1 mg kg(-1) on a fresh weight basis. Only organic arsenicals were used because they are: a) the only arsenic species allowed for agricultural applications and b) more mobile than inorganic species. Selection of French beans, a sensitive plant to arsenic, was based on the fact that arsenic upward translocation is higher in sensitive than in tolerant plants. A 2 x 3 factorial experiment was conducted with two organic arsenic species: methylarsonic acid (MAA) or dimethylarsinic acid (DMAA) and three arsenic concentrations: 0.2, 0.5, or 1.0 mg L(-1). Arsenic phytotoxicity was primarily determined by soluble arsenic concentration. Experimental results showed that the low bean plant tolerance to arsenic is possibly due to the high arsenic upward transport to shoots, which could result in profound negative metabolic consequences. Even under extremely adverse conditions, arsenic residues in edible beans were below the maximum statutory limit set by the Spanish legislation. It can be concluded that the major danger of organic arsenical herbicides is that of decreased productivity rather than high arsenic uptake by consumers.  相似文献   

19.
To study plant growth and yield effects of the antiozonant ethylenediurea (EDU), which is frequently used for ozone crop loss assessments, dose-response studies were carried out with potted bean plants under greenhouse conditions in winter and spring. Two cultivars of Phaseolus vulgaris L., differing in sensitivity to ozone (O(3)), were grown in unfiltered air on a sandy loam rich in organic matter and on a vermiculite-clay mixture. Four treatments of EDU at concentrations from 300 to 800 mg liter(-1) were given as a soil drench during plant development. Foliar symptoms of EDU phytoxicity were observed at all doses, and plant biomass, particularly pod dry weight, was considerably reduced to increasing doses of EDU. Primary and first trifoliate leaf weight in EDU-treated plants increased as did the number of buds, indicating an extension of vegetative growth and a delay of reproductive processes. 'BBL 290' beans, which are O(3)-sensitive, were injured by EDU more than the O(3)-tolerant 'BBL 274'. The phytotoxic effects of EDU were more pronounced in the synthetic growth substrate than in field soil. In a second experiment, EDU was applied in concentrations from 100 to 400 mg liter(-1) to 'BBL 290' plants, exposed to filtered air or simulated levels of O(3) pollution. In field soil, plant growth and biomass partitioning in filtered air was only slightly altered by EDU, although leaf injury due to EDU occurred. In the vermiculite-clay mix, the biomass of most plant organs, particularly that of roots, was linearly reduced with increasing EDU doses. O(3) did not cause any alteration in plant biomass in field soil-grown and EDU-treated plants. Ozone leaf injury, which affected 67% of primary leaf area in non-treated plants, was completely suppressed by EDU doses as low as 100 mg liter(-1). This indicates that low concentrations of EDU, which do not affect plant growth in field soil, provide sufficient protection from O(3) injury. The need for careful EDU dose-response studies prior to field assessments is emphasized.  相似文献   

20.
Twenty-six-day-old black turtle bean cv. 'Domino' plants were exposed to nitrogen dioxide (0.0, 0.025, 0.05 and 0.10 microl liter(-1)), 7 h per day for 5 days per week for 3 weeks, under controlled environment. Data were collected on net photosynthesis rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately after exposure, 24 h after the termination of exposure and at maturity (when the leaves had just started turning yellow), using a LICOR 6000 Portable Photosynthesis System. Chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), total chlorophyll (tot-Ch) and leaf nitrogen were measured immediately after exposure and at maturity. Growth characteristics-relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and root: shoot ratio (RSR)-were computed for treated plants. Net photosynthesis rate increased by 53% in 0.10 microl liter(-1) NO2 treated plants immediately after exposure compared to control plants. Dark respiration rates were also higher in treated plants. Ch-a, Ch-b and tot-Ch showed significant increases with 0.1 microl liter(-1) NO2 treatment immediately after exposure. Foliar nitrogen content showed an increase in treated plants both immediately after exposure and at maturity. Increases were also seen in RGR and NAR. Plant yield increased by 86% (number of pods), 29% (number of seeds) and 46% (weight of seeds), respectively. Nitrogen dioxide stimulated the overall plant growth and crop yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号