首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radon levels were measured in 119 groundwater samples collected throughout the active volcanic area of Mt. Etna by means of a portable Lucas-type scintillation chamber. The measured activity values range from 1.8 to 52.7 Bq l(-1). About 40% of the samples exceed the maximum contaminant level of 11 Bq l(-1) proposed by the USEPA in 1991. The highest radon levels are measured in the eastern sector of the volcano, which is the seismically most active zone of the volcano. On the contrary the south-western sector, which is both seismically active and a site of intense magmatic degassing, display lower radon levels. This is probably due to the formation of a free gas phase (oversaturation of CO(2)) that strips the radon from the water. Comparison of the data gathered at Mt. Etna with those of other areas indicates that (222)Rn activity in groundwater is positively correlated with both the content of parent elements in the aquifer rocks and the temperature of the geothermal systems that interacts with the sampled aquifers.  相似文献   

2.
Radon (Rn(222)) levels in an indoor atmosphere of a multi-storey building at Mumbai have been measured for one year covering all the four seasons. Monitoring was carried out using the time-integrated passive detector technique, using Kodak-115 type Solid State Nuclear Track Detector (SSNTD) films of 2.5x2.5 cm size. Measured indoor radon levels showed a decreasing trend with height with concentration ranging from 41 Bq m(-3) at ground floor level to 15 Bq m(-3) at 19th floor level. Using the dose conversion factors, the inhalation dose due to breathing of radon gas is estimated to be 1.03 mSv y(-1) at the ground floor to 0.38 mSv y(-1) at the 19th floor level. Measured indoor radon concentrations on each floor were compared with the computed values using a mathematical model. The agreement between measured values and calculated values of indoor concentrations at different floors was very good within the limitations of various field parameter values.  相似文献   

3.
The results of a survey of outdoor radon concentrations in Milan are reported. Measurements were performed hourly over a continuous four year period from January 1997 to December 2000. Radon concentration was obtained by two means: both direct measurement of radon; and measurement of its decay products. The average daily pattern of radon concentration featured a minimum in the late afternoon and a maximum in the early hours of the morning. A seasonal pattern with higher concentrations in winter than in summer (from around 15 Bq m(-3) in winter to around 5 Bq m(-3) in summer) was also observed. Similar average annual values of around 10 Bq m(-3) were obtained. The annual effective outdoor radon dose was found to be 0.12 mSv. The variation from minimum in the afternoon to maximum the following morning was found to be a good indicator of the height of the nocturnal mixing layer. The variation between maximum and minimum levels on the same day is an index of the maximum height of the mixing layer. Furthermore, our long term measurements of radon have permitted us to examine the dispersion characteristics of the atmosphere over Milan, and to establish the frequency of conditions unfavourable to the dispersion of atmospheric pollutants.  相似文献   

4.
Specific activities of the natural radionuclides (238)U, (226)Ra, (232)Th and (40)K were measured by means of gamma-ray spectrometry in surface soil samples collected from the city of Ptolemais, which is located near lignite-fired power plants. The mean activity values for (238)U, (226)Ra, (232)Th and (40)K were found to be 42+/-11, 27+/-6, 36+/-5 and 496+/-56 Bq kg(-1), respectively. These values fall within the range of typical world and Greek values for soil. The indoor radon concentration levels, which were also measured in 66 dwellings by means of SSNTD, ranged from 12 to 129 Bq m(-3), with an average value of 36+/-2 Bq m(-3). This value is close to world and Greek average values for indoor radon concentrations. The total effective dose due to outdoor external irradiation of terrestrial origin and to indoor internal irradiation from the short-lived decay products of (222)Rn was estimated to be 1.2 mSv y(-1) for adults, which is lower than the global effective dose due to natural sources of 2.4 mSv y(-1).  相似文献   

5.
The aim of this work was to make a comparison of indoor radon concentrations in dwellings and in soil air in the area of two geological formations in the Suwa?ki region (Poland). The mean arithmetic airborne concentration was found to be the highest (301 Bq m (-3)) in the basements of buildings in the gravel and sand areas, whereas in the boulder clay areas it reached 587 Bq m (-3). Out of 54 measurements of radon concentrations performed at the ground floor, in eight cases concentrations were found to exceed 200 Bq m (-3) - permissible radon level in new-built houses in Poland and in three cases these values were even higher than 400 Bq m (-3). The highest radon levels were noted in houses with earthen basement floors and with direct entrance from the basement to rooms or kitchens. The mean arithmetic radon concentration in the soil air in the sandy and gravel formations was 39.7 kBq m (-3) and in clay formation it was 26.5 kBq m (-3). Higher radon levels were also found in the water obtained from household wells reaching 8367 Bq m (-3) as compared with tap water (2690 Bqm (-3)). The mean indoor concentration for the whole area under study was found to be 169.4 Bq m (-3), which is higher than the mean value for Poland (49.1 Bq m (-3)) by a factor of 3.5.  相似文献   

6.
Measurements of indoor radon concentrations were performed in 28 low-rise houses and 30 apartments in Patras area from December 1996 to November 1997, using nuclear track detectors. The investigation was focused on the effects of season and floor number, as well as on the existence of a basement in low-rise houses on indoor radon levels. It was found that the differences in mean radon concentrations between adjacent seasons, in a number of 61 selected sampling sites distributed in 28 houses, were statistically significant. As expected, a maximum was found in winter and a minimum in summer. The differences in mean radon concentration on different floors of the same houses were also statistically significant and followed a linear decrease from underground to 2nd floor. In addition, indoor radon concentrations in the ground floor were found to be influenced by the existence or not of a basement. The average annual radon concentration was found to be 41 Bq m(-3) for the houses, 28 Bq m(-3) for the apartments and 38 Bq m(-3) for all the dwellings. These values lead to an average effective dose equivalent of 1.1, 0.7 and 0.9 mSv y(-1), respectively. Residents living on the underground in low-rise houses, during winter, where the average effective dose equivalent is 2.1 mSv y(-1), attain the higher risk.  相似文献   

7.
Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3).  相似文献   

8.
Coal and its by products often contain significant amounts of radionuclides, including uranium which is the ultimate source of the radioactive gas radon. Burning of coal and the subsequent emission to the atmosphere cause the re-distribution of toxic trace elements in the environment. Due to considerable economic and environmental importance and diverse uses, the collected fly ash has become a subject of worldwide interest in recent years. In the present study, radon exhalation rate and the activity concentration of (238)U, (232)Th and (40)K radionuclides in fly ash samples from Durgapur thermal power plant (WB) have been measured by "Sealed Can technique" using LR-115 type II detectors and a low level NaI (Tl) based gamma ray spectrometer, respectively. Radon exhalation rate varied from 360.0 to 470.0 mBq m(-2)h(-1) with an average value of 406.8 mBq m(-2)h(-1). Activity concentrations of (238)U ranged from 84.8 to 126.4 Bq kg(-1) with an average value of 99.3Bqkg(-1), (232)Th ranged from 98.1 to 140.5 Bq kg(-1) with an average value of 112.9 Bq kg(-1) and (40)K ranged from 267.1 to 364.9 Bq kg(-1) with an average value of 308.9 Bq kg(-1). Radium equivalent activity obtained from activity concentrations is found to vary from 256.5 to 352.8 Bq kg(-1) with an average value of 282.5 Bq kg(-1). Absorbed gamma dose rates due to the presence of (238)U, (232)Th and (40)K in fly ash samples vary in the range 115.3-158.5 nGy h(-1) with an average value of 126.4 nGy h(-1). While the external annual effective dose rate varies from 0.14 to 0.19 mSv y(-1) with an average value of 0.15 mSv y(-1), effective dose equivalent estimated from exhalation rate varies from 42.5 to 55.2 microSv y(-1) with an average value of 47.8 microSv y(-1). Values of external hazard index H(ex) for the fly ash samples studied in this work range from 0.69 to 0.96 with a mean value of 0.77.  相似文献   

9.
Radon gas contributes a significant fraction of the natural background radiation dose, and in some areas raised levels are found in buildings. both homes and the workplace. Different UK Action Levels apply to homes and the workplace. because of the diurnal variation of radon. This study reviews the results for a number of hospitals throughout England and Wales. and suggests that the likelihood of finding raised radon levels is similar in the workplace and homes in the same area. Radon measurements and consequent remediation of any raised levels are appropriate in all workplaces in radon Affected Areas with over 5% of houses above the UK domestic Action Level of 200 Bq m(-3).  相似文献   

10.
The aim of this paper was to study the variations of radon and daughter nuclei during treatment in the thermal spas of Lesvos Island (Greece). For this purpose, in the thermal spas of Lesvos we have measured the radon concentrations of thermal waters, as well as indoor radon, daughter and coarse particle (>500 nm) concentrations. Various instruments and procedures were employed for measurements. Radon concentrations of thermal waters were found to lie in the range 10 Bq l(-1) and 304 Bq l(-1). Concentration peaks both for radon, radon daughter and coarse particle, were found to appear during filling of baths in the treatment process. The doses delivered to the bathers during treatment were in the range of 0.00670-0.1279 mSv per year, while the doses delivered to personnel were below 20 mSv per year.  相似文献   

11.
The aim of the study was to compare radon concentrations in neighbouring hospital buildings which were constructed in different years during the period 1963-2000 and are located in areas with similar radon potential. The value of arithmetic mean (AM) radon concentration in soil gas amounted to 14,464 Bq m(-3). In a hospital built 40 years ago, the AM radon concentration in the cellar was 38.4+/-36.7 Bq m(-3) and on higher levels it was 17.1+/-10.3 Bq m(-3). In a hospital built 16 years ago, these values equaled 45.5+/-47.2 Bq m(-3) and 20.4+/-12.5 Bq m(-3), respectively. In the newest hospital, built three years ago, radon concentration (AM) in a cellar was 32.3+/-27.4 Bq m(-3) and the respective value on higher levels amounted to 20.4+/-12.6 Bq m(-3). When comparing radon concentrations in the cellars, no statistically significant differences were found. Similarly, no statistically significant differences were observed between radon concentrations measured on higher levels in investigated hospital buildings.  相似文献   

12.
Fifty granitic rock samples were collected from different plutons in the central part of the Eastern Desert of Egypt and were analyzed for specific concentrations of (238)U, (232)Th and (40)K radionuclei. The measurements were carried out using a high performance and stability Nomad Plus spectroscopy system attached to a 1.7 keV (FWHM) HPGe detector. The spectra were analyzed using the direct gamma counting comparison method as well as the traditional absolute efficiency curve method. The highest average value of (238)U concentration (1184 Bq kg(-1)) was observed at EI Misikat region whereas the highest average values of (40)K and (232)Th concentration (2301.8 and 162.5 Bq kg(-1) respectively), were detected at Gabal Homret Waggat area. The radium equivalent activity (Ra(eq)), the absorbed dose rate (D), the external hazard index (H(ex)) and the annual gonadal dose equivalent were also calculated and compared to the international recommended values. Radon exhalation rate from the rock samples were measured using the activated charcoal canister method. The average value of radon exhalation varies from 0.052 to 0.69 Bq m(-2) h(-1) and depends on the specific concentration of uranium.  相似文献   

13.
Nationwide outdoor radon (222Rn) concentrations in Japan were measured to survey the environmental outdoor 222Rn level and to estimate the effective dose to the general public from 222Rn and its progeny. The 222Rn concentration was measured with a passive-type radon monitor. The 222Rn monitors were installed at about 700 points throughout Japan from 1997 to 1999. The annual mean 222Rn concentration in Japan was estimated from four quarters measurements of 47 prefectures in Japan. Nationwide outdoor mean 222Rn concentration was 6.1 Bq m(-3). This was about 40% of the indoor 222Rn concentration in Japan. The 222Rn concentration in Japan ranged from 3.3 Bq m(-3) in the Okinawa region to 9.8 Bq m(-3) in the Chugoku region, reflecting geological characteristics. Seasonal variation of outdoor 222Rn concentration was also found to be lowest in July to September, and highest in October to December. From the results of this 222Rn survey and previous indoor 222Rn survey program, the effective dose to the general public from 222Rn and its progeny was estimated to be 0.45 mSv y(-1).  相似文献   

14.
The radioactivity level of soils in a volcanic area in Cameroon was determined and discussed. Thirty soils samples were collected from Buea and Limbé cities located in the south-western Cameroon. These two regions are known for theirs volcanic grounds due to the presence of Mount Cameroon Mountain. The activity concentrations of natural radionuclides as well as that of the fission product were evaluated by gamma-ray spectrometry using a hyper-purity germanium detector (HPGe). The ranges of concentrations in the surveyed soils were 11-17 Bq kg(-1), 22-36 Bq kg(-1) and 43-201 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The radioisotope (137)Cs was also found but in a very small amount. The outdoor absorbed dose rate 1m above ground with the corresponding annual effective dose rate, assuming a 20% occupancy factor was estimated. The radium equivalent and the external hazard index were also evaluated and results are compared with available data from other studies and with the world average value [United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly on the Effects of Atomic Radiation. United Nations, New York; UNSCEAR, 2000. Sources and Effects of Ionizing Radiations. Report to the General Assembly with Scientific Annexes. United Nations, New York]. A solid state nuclear track detector (SSNTD), LR-115 was used for soil radon measurements at a depth of 50 cm. The ranges of soil radon concentrations were 6.7-10.8 kBq m(-3) and 5.5-8.7 kBq m(-3) in Buea and Limbé, respectively. A positive correlation was found between concentrations of radium measured with gamma-spectrometry and the soil radon concentrations measured with the nitrate cellulose detectors. The results of this study provide the radioactivity level in soil of a volcanic area, which has been found to be within the safety limits. The south-western Cameroon can be considered as having normal natural background radiation.  相似文献   

15.
Radon ((222)Rn) concentration was measured at indoor workplaces in Japan to estimate effective dose to the public from (222)Rn and its progeny. Measurements were made from 2000 to 2003 at 705 sites in four categories of office, factory, school and hospital. Passive type Rn monitors equipped with two sheets of polycarbonate thin films for measuring radon concentrations were installed at observation sites and replaced every 3 months to observe seasonal variations in (222)Rn concentrations. The range of annual mean (222)Rn concentrations for all sites was 1.4-182 Bq m(-3), with the arithmetic mean and standard deviation were 20.8 and 19.5 Bq m(-3). Annual mean (222)Rn concentration observed at office, factory, school and hospital were 22.6, 10.1, 28.4 and 19.8 Bq m(-3), respectively. Seasonal variations in (222)Rn concentrations at offices, schools and hospitals were similar to those found in dwellings, and variations in factories were similar to those found in outdoor environments. (222)Rn concentration observed in every quarter period was found to decrease as follows: school>office>hospital>factory. The average effective dose to the public due to (222)Rn was estimated to be 0.41 mSv y(-1) weighted by the working population. Considering the (222)Rn exposure in indoor workplaces, effective dose to the general public is estimated to be in the range from approximately 0.42 to 0.52 mSv y(-1).  相似文献   

16.
Concentration of 226Ra in Hungarian bottled mineral water   总被引:1,自引:0,他引:1  
Concentration of the radionuclide 226Ra was determined in almost every type of bottled mineral water commercially available in Hungary. Determination of the radon coming from the radium dissolved in the water was used for activity measurement. As the results show, the 226Ra concentrations exceed the level of 100 mBq l(-1) in six cases out of the 28 types of mineral water investigated. In one case 3 Bq l(-1) was measured, which provides 0.3 mSv year(-1) committed effective dose for adults in the case of a consumption rate of 1 l day(-1). In soft drinks produced from mineral water a concentration of 2.6 Bq l(-1) was determined, which means 1.4 mSv year(-1) effective dose in the age group 12-17 years in the case of permanent daily drinking of 1 l of these beverages.  相似文献   

17.
Radon daughter levels have been monitored in 12,000 Swedish dwellings during the last two years. In 1979 the Swedish Government introduced temporary limits for the radon daughter concentration in dwellings. For existing buildings this limit is 400 Bq/m3 (0.11 WL). Two different methods were used to monitor the radon daughter concentration. The majority of the houses presented in this paper were monitored using a track-etch detector; some houses were tested using a filter sampling technique while the ventilation rate was determined. Close to 15% of the investigated houses have a radon daughter concentration higher than 400 Bq/m3. The majority of these houses were one-family houses. Almost 10% of this group has a concentration above 1000 Bq/m3 (0.27 WL). The results from this study show that the two most important sources for radon in buildings are building materials and the ground.  相似文献   

18.
The results of radon activity recorded in 70 dwellings of Nurpur area, Kangra district, Himachal Pradesh, India are reported. LR-115 Type 2 films in the bare mode were exposed for four seasons of three months each covering a period of one year for the measurement of indoor radon levels. The calibration constant of 0.020 tracks cm(-2) d(-1) per Bq m(-3) has been used to express radon activity in Bq m(-3). The annual average indoor radon concentrations in 17 different villages of the area are found to vary from 168+/-46 to 429+/-71. Most of the indoor radon values lie in the range of action levels (200-600 Bq m(-3)) recommended by International Commission on Radiological Protection.  相似文献   

19.
Radon mass exhalation rate of soil samples was measured using an exhalation chamber of 10 dm(3) volume and a Lucas cell. The results show that mass of sample, grain size and water content influence the radon mass exhalation rate. For soil of (226)Ra activity concentration about 2500 Bq kg(-1) and samples within the range from 0.20 kg to 0.50 kg, the radon mass exhalation rate values are higher than those for samples of other masses. The observed radon exhalation rate is an inverse function of the average grain size. At the water content about 6% by weight, the radon mass exhalation rate reaches maximum, then it decreases with both increasing and decreasing of the water content in the sample.  相似文献   

20.
An investigation of radon levels in the caves of Creswell Crags, Derbyshire, an important Site of Special Scientific Interest (SSSI) shows that the Lower Magnesian Limestone (Permian) caves have moderate to raised radon gas levels (27-7800 Bq m(-3)) which generally increase with increasing distance into the caves from the entrance regions. This feature is partly explained in terms of cave ventilation and topography. While these levels are generally below the Action Level in the workplace (400 Bq m(-3) in the UK), they are above the Action Level for domestic properties (200 Bq m(-3)). Creswell Crags has approximately 40,000 visitors per year and therefore a quantification of effective dose is important for both visitors and guides to the Robin Hood show cave. Due to short exposure times the dose received by visitors is low (0.0016 mSv/visit) and regulations concerning exposure are not contravened. Similarly, the dose received by guides is fairly low (0.4 mSv/annum) due in part to current working practice. However, the risk to researchers entering the more inaccessible areas of the cave system is higher (0.06 mSv/visit). This survey also investigated the effect of seasonal variations on recorded radon concentration. From this work summer to winter ratios of between 1.1 and 9.51 were determined for different locations within the largest cave system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号