首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elimination of 3 radionuclides from Euphausia pacifica was measured over a 5 month period. The biological half-lives for 65Zn, 137Cs, and 144Ce, calculated after the euphausiids had ingested radioactive Artemia nauplii, were found to be 140 days, 6 days, and 7.5 h, respectively. The percentages of body burdens lost in molts were greatest for the fission products, 144Ce (21%) and 137Cs (7%), and least for 65Zn (1%). Elimination of the isotopes in the feces could not be followed because of the difficulty in collecting fecal material for analysis; however, 1 sample collected 2 months after the beginning of the elimination experiment had no measurable radioactivity. Loss of 65Zn from molts and time to disintegration of the molts were found to be temperature dependent over a 5° to 15°C range, and the sinking rate of molts was both temperature and salinity dependent. Calculations showed that, in areas in the North Pacific outside the influence of upwelling, percentage 65Zn loss from sinking molts (before disintegration of the molts) was likely to be the same throughout the year, since the molts would be exposed to about the same mean temperature in the water column in all seasons. Even though temperature structure in the upper layers changes with season, mean temperatures change very little when calculated over the sinking distance of intact molts. Intact molts would sink to slightly over 400 m in the absence of turbulence, and would lose 87% of their 65Zn by the time they reached this depth. Sinking molts thus might contribute substantially to the vertical transport of 65Zn in the sea. If loss of 65Zn in fecal pellets is assumed to be small under our experimental conditions, and molting loss is only 1% of 65Zn body burden, the major mechanism of 65Zn loss from euphausiids feeding on non-radioactive food must be isotopic exchange with the water. Approximately 96% of the initial body burden was eliminated over a period of 5 months.Supported by USAEC research contract AT (45-1)1830, PHS grant ES00026, and a Richland Graduate Fellowship to S. W. Fowler.  相似文献   

2.
Sinking rates of natural copepod fecal pellets   总被引:4,自引:0,他引:4  
Many pure samples of natural fecal pellets have been collected from mixed small copepods and from the pontellid copepod Anomalocera patersoni in the Ligurian Sea, using a specially designed pellet collection device. Sinking rates of fresh pellets and pellets aged up to 33 days have been determined at 14°C, the mean temperature of the essentially isothermal water column in the Ligurian Sea. Sinking rates of pellets collected during calm sea states increased with increasing pellet volume, but sinking rates of pellets collected during rough sea (Beaufort scale 6) showed little correlation with pellet size. Much of the variability in the sinking rate-pellet size relationships was the result of different pellet composition and compaction, but not pellet age. Pellets produced from laboratory diets of phytoplankton and phytoplankton-sediment mixes showed the expected wide variability in sinking rates, with sediment-ballasted pellets sinking much faster than pellets produced from pure algal diets; thus determination of vertical material fluxes in the sea using laboratory-derived fecal pellet sinking rates is unwarranted. Natural pellet sinking data for small copepods and A. patersoni have been combined with similar data for euphausiids, to yield sinking rates of roughly two orders of magnitude over three orders of magnitude in pellet volume. Pellets from small copepods sank at speeds too slow to be of much consequence to rapid material flux to the deep sea, but they undoubtedly help determine upper water distribution of materials. Recalculation of fecal pellet mass flux estimates from the literature, using our sinking rate data for natural small copepod pellets, yielded estimates about half those of previously published values. Earlier studies had concluded that small fecal pellets were of lesser significance to total material flux than fecal matter; our recalculation strengthens that conclusion. Pellets from large copepods and euphausiids, however, have the capability to transport materials to great depths, and probably do not substantially recycle materials near the surface. The fact that the majority of pellets which had previously been collected in deep traps by other workers were of a size comparable to pellets from our large copepods supports the contention that these larger pellets are the main ones involved in vertical flux.  相似文献   

3.
The role of the Mediterranean euphausiid Meganyctiphanes norvegica in the cycling of radiocerium (141Ce) was examined. When uptake of 141Ce occurs directly from the water, a dynamic population equilibrium is reached at a concentration factor of about 250. Molting was responsible for up to 99% loss of total body burden at first molt, and about 45% of the remaining activity at second molt, thus denying true longterm equilibrium to individual animals. Fecal pellets did not contain measureable 141Ce activity when the euphausiids accumulated the isotope from water, thus proving that surface adsorption was the key accumulating process from water. When radiocerium was taken in through ingestion of labelled Artemia, about 99% of the body burden was voided as fecal pellets. Excretion by this route was accelerated when euphausiids were fed non-radioactive Artemia during loss phase. Radioactive counts of the pellets confirmed that all ingested 141Ce was lost through defecation. When 141Ce was ingested as labelled phytoplankton, a substantial fraction of the total body burden occurred in the molts, which indicated that the phytoplankton lost 141Ce to the water and the radioactivity was subsequently adsorbed to outer surfaces of the euphausiids. Molts, fecal pellets, and freshly-killed euphausiids lost 141Ce to the water exponentially, the rates being similar to the exponential portions of the loss curves for live, non-molting individuals. It is suggested that M. norvegica, and probably other pelagic zooplankters, can greatly accelerate radiocerium transport to the ocean floor by packaging the isotope as fecal pellets. In coastal areas subject to low-level radioactive waste disposal, 141Ce might be ionic (or at least soluble) to a great extent, in which case euphausiids could take up the isotope rapidly and accelerate its vertical transport via molting.  相似文献   

4.
W. Yoon  S. Kim  K. Han 《Marine Biology》2001,139(5):923-928
Morphological characteristics and sinking velocities of naturally occurring fecal pellets of copepods, euphausiids, salps, and pelagic mollusks collected in the northeastern tropical Atlantic were investigated during the period of May-June 1992. The fecal pellets of copepods and euphausiids were cylindrical and distinguished only by their size. Those of salps were, in general, rectangular, and slight differences were noted according to the species. The fecal pellets of the molluscan pteropod Clio sp. were conical, while those of the molluscan heteropod Carinaria sp. were spiral. The sinking velocities ranged from 26.5 to 159.5 m day-1 for copepod fecal pellets, from 16.1 to 341.1 m day-1 for euphausiid pellets, from 43.5 to 1167.6 m day-1 for salps' pellets (Cyclosalpa affinis, Salpa fusiformis, Iasis zonaria, and two unidentified species), from 65 to 205.7 m day-1 for Clio sp. pellets, and from 120.3 to 646.4 m day-1 for Carinaria sp. fecal pellets. The measured sinking velocities were compared with estimates predicted using the equations of Komar et al. (1981; Limnol Oceanogr 26:172-180), Stokes' law, and Newton's second law, using either a constant density of fecal pellets (1.22 g cm-3) or densities estimated with the three different equations. When a constant density was used, the three equations overestimated the sinking velocities; Stokes' law resulted in the largest overestimation, and Newton's second law, the smallest. At the taxa level, the overestimation was greatest for euphausiid 1 fecal pellets and smallest for copepod fecal pellets. When the three equations were used to estimate fecal pellet density, the density estimated using the equation of Komar et al. was the greatest, and that using Stokes' law, the smallest, resulting in over- and underestimation of sinking velocities, respectively. Newton's second law resulted in an intermediate density and gave the closest estimate of sinking velocities. We propose that measurement of sinking velocities of a portion of the fecal pellets might guide in choosing an appropriate equation to be used for a reasonable interpretation of vertical mass flux.  相似文献   

5.
The dynamics of accumulation and loss of different physico-chemical forms of 106Ru were measured in the euphausiid Meganyctiphanes norvegica. The accumulation of 106Ru was directly related to the concentration of the radioisotope in solution, as evidenced by similar concentration factors for euphausiids in the low and high activity 106Ru chloride solutions. The chemical form of the radioisotope in solution had a pronounced effect on the uptake, with 106Ru chloride fractions being accumulated at a faster rate than 106Ru nitrosyl-nitrato complexes. Euphausiids lost 106Ru, previously accumulated from the 106Ru chloride complexes, at a faster rate than 106Ru which had been accumulated from 106Ru nitrosyl-nitrato forms. Also, in the case of the 106Ru chloride complexes, the loss rate was inversely proportional to the time allowed for isotope accumulation. The process of molting greatly accelerated the loss of 106Ru from euphausiids, with first molts shed during the loss phase accounting for 70 to 80% of the total 106Ru body burden. When euphausiids accumulated 106Ru from the food chain, the initial-loss rate was rapid due to large amounts of the radioisotope associated with fecal pellets; however, no relationship was found between loss rate and the number of food rations received. Molts from these individuals did not contain 106Ru, thus, loss from euphausiids obtaining this radioisotope through the food chain is mainly due to fecal pellet deposition and other excretion or exchange processes.  相似文献   

6.
In a series of laboratory experiments carried out during 1982, the biokinetics of 237Pu (IV), 237Pu (V), 241Am (III), and 252Cf (III) were studied in the benthic marine isopod Cirolana borealis Lilljeb. Following a 3 wk exposure to labelled seawater, isopods reached non-equilibrium concentration factors of 52±15, 54±12, 176±14, and 185±53 for Pu (IV), Pu (V), Am and Cf, respectively. Uptake of these radionuclides occurred to a great extent by surface adsorption, with the major fraction of the accumulated radionuclides being associated with exoskeleton and lesser percentages located in gut, digestive gland, muscle and haemolymph. The pattern of radiotracer depuration was in all cases biphasic, with the long-lived retention compartment retaining the largest fraction of whole-body radioactivity. Biological half-lives for radionuclide turnover in the long-lived compartment were 60±3 d, 87±5 d, 261±12 d and 288±60 d for Pu (IV), Pu (V), Am and Cf, respectively. Examination of radionuclide distribution among tissues following longterm depuration showed that the radionuclides were eliminated from internal tissues more rapidly than from the exoskeleton. Uptake and depuration studies indicated that the biokinetics of americium and californium were similar to each other, but that they differed significantly from those of oxidized and reduced plutonium. In general, these experimental results support previous reports that americium and californium are more bioavailable than plutonium in the marine waters. The fraction americium and californium assimilated into tissue from food was very low and did not exceed 5%. Unassimilated labelled food was often retained in the gut for more than 2 mo and released only infrequently in a loosely bound condition. In the event of contamination, this particular feeding-digestion strategy in highly mobile, scavenging isopods could act as a potential biological mechanism for the widespread dispersion of radioactive wastes.  相似文献   

7.
The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 μg C m−3 day−1. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg m−2 day−1).  相似文献   

8.
Sinking rates were determined for fecal pellets produced by gelatinous zooplankton (salps, Salpa fusiformis and Pegea socia; pteropods, Corolla spectabilis; and doliolids, Dolioletta gegenbaurii) feeding in surface waters of the California Current. Pellets from the salps and pteropods sank at rates up to 2 700 and 1 800 m d-1, respectively; such speeds exceed any yet recorded for zooplankton fecal pellets. Fecal pellets of salps were rich in organic material, with C:N ratios from 5.4 to 6.2, close to values for living plankton. The relation between volume and sinking rate indicates that salp and pteropod pellets are slightly less dense than those of pelagic Crustacea; moreover, pellet density varied between different collection dates, probably because of differences in composition. In contrast, doliolid pellets sank at rates up to 208 m d-1, a rate much lower than would be expected from pellet size. Thus, density and sinking rates of pellets are much more variable in zooplankton than would be expected from studies of crustaceans alone. Moreover, the extraordinarily high sinking rates of fecal pellets of salps indicates that these tunicates may be disproportionately important in the flux of biogenic materials during periods when they form dense population blooms.  相似文献   

9.
Participatory turnover time is defined as the time required to cycle an element in a system through a given material in that system. The participatory turnover time of ionic zinc by the adult Meganyctiphanes norvegica population in the Ligurian Sea ranged between 498 and 1243 years, depending upon the available food supply, and considering the food chain as the only route for zinc accumulation by the population. A total-impact turnover time was calculated as the sum of the participatory turnover time for live individuals plus the time required for dead euphausiids to lose 90% of their zinc to the water. Carcasses lost zinc to the water slower than either feces or molts, and so established the maximum loss time for all particulate excretion products; nevertheless, total-impact turnover time for zinc did not differ significantly from the participatory turnover time. The net vertical transport of zinc by M. norvegica from the sea surface to any specified depth can be calculated as the sum of the dissolved zinc excreted below the depth plus the concentrations of zinc left in feces, molts, and carcasses after they have sunk to the specified depth. Carcasses sink the fastest and lose the smallest fraction of their zinc concentration during descent; fecal pellets sink the slowest and lose the greatest fraction of their zinc concentration, and molts are intermediate. Nevertheless, feces represents the major route for delivering zinc to the bottom of the Ligurian Sea (2500 m), because concentration of the element in the pellets is so much higher than in carcasses or molts. Excretion of dissolved zinc into the water at the vertical migration depth of the living population during daylight hours was also inconsequential. Feces zinc represented over 80% of the total zinc transported to the sea floor if only marginal food supplies were available to the euphausiids, and over 90% if food was in sufficient supply. M. norvegica can effect a net transport of about 98% of its body zinc concentration below 500 m daily, in conditions of sufficient food supply and assuming that no released products are eaten during descent. If the food supply in the Ligurian Sea is considered only marginal throughout the year, M. norvegica can still effect a daily net transport below 500 m of about 36% of its body concentration, and about 6% of its body concentration will reach 2500 m daily.  相似文献   

10.
Sinking rates of fecal pellets from the marine copepod Pontella meadii   总被引:1,自引:0,他引:1  
Sinking rates of fecal pellets produced by the marine copepod Pontella meadii, grazing on 4 different phytoplankton diets, ranged from 15 to 153 m/day, with a mean of 66 m/day. Sinking rates, in general, were directly related to fecal pellet volumes, but unrelated to the diets used to produce the fecal pellets. There were two-to-threefold variations in sinking rates between fecal pellets of the same volumes, often produced on the same diets. Twenty repetitions of timed sinking of a single fecal pellet revealed sinking rates varying from 33 to 79 m/day, as well as variations in sinking rates within the course of individual descents. It is suggested that copepod fecal pellets are of such small volumes and densities that their sinking rates are subject to microstructural variations in the most carefully controlled water columns. Scanning electron microscope observations revealed lack of structural damage to some of the diatom frustules in the fecal pellets, suggesting that superfluous feeding may have occurred. Thus, the accelerated sinking rates of copepod fecal pellets may provide a mechanism for nutritional enrichment of the deep-sea ecosystem with organic parcels containing incompletely-assimilated plant material.  相似文献   

11.
Salps (mainly Salpa fusiformis and, to a lesser extent, Pegea socia) and a web-building pteropod (Corolla spectabilis) were studied in epipelagic waters of the central California Current. Although both kinds of gelatinous zooplankton trap phytoplankton in a mucus net, a fecal pellet analysis indicated that their diet differs significantly when they feed together, probably because of differences both in the pore sizes of their nets and in their feeding methods. Salps have a finemesh filter, on which they can retain even the smallest phytoplankton; thus, when small coccolithophores are abundant, as they were in our study, salp feces contain such cells and the coccoliths derived from them. In contrast, pteropods feeding in the same area produce fecal pellets consisting chiefly of larger phytoplankton, especially diatoms. Since fecal pellets transport most biogenic material to the deep sea, changes in herbivore species composition at a given geographic location can change the chemistry of materials entering deep water; at our study site, the more salps, the greater the calcite flux, and, the more pteropods, the greater the silica flux. In addition, fecal pellets of both salps and pteropods include partially digested residues of phytoplankton that appear as olive-green spheres, having an ultrastructure identical with that of the socalled olive-green cells. Presumably, fecal pellets, after sinking into deep water, ultimately disintegrate. releasing both the viable phytoplankton and the olive-green spheres into aphotic waters. Thus the feces of epipelagic herbivores are likely sources of much of the flora of the deep ocean.  相似文献   

12.
Radiotracer experiments were performed (February–April, 1982) to study the assimilation and metabolism of the transuranium nuclide americium-241 in the marine teleosts Serranus scriba (Linnaeus, 1758) and Scorpaena notata Rafinesque, 1810, caught off the Monaco coast. Fish fed with 241Am-labelled food showed that assimilation of this radionuclide takes place through the gastrointestinal walls and that the small fraction accumulated is incorporated mainly in the skin, muscle and skeleton. Gut-transfer coefficients were similar in both species and averaged 0.7% (range 0.1 to 1.7%) of the ingested activity. The calculated biological half-lives for loss of the absorbed fraction ranged between 49 and 61 d for Serranus scriba and 12 and 117 d for Scorpaena notata. Results from an intramuscular injection experiment indicated that 241Am was retained mainly in the liver, skin and skeleton; the fraction accumulated by muscle was very low. Liver displayed a relatively short biological half-time for 241Am loss of roughly 24 d. Routes of 241Am excretion from the teleosts appear to be through the kidneys, gills and feces with bile serving as a possible excretion route from the liver. From the limited amount of published information available for comparison, experimental evidence is presented which suggests that 241Am taken up via the food chain is more biologically available to marine fish than is plutonium.  相似文献   

13.
Phytoplankton sinking rates in oligotrophic waters off Hawaii,USA   总被引:3,自引:0,他引:3  
The sinking rates in two size fractions of natural phytoplankton were measured over much of the photic zone in a subtropical environment. At 24, 40 and 71 m, sinking rates (± SD) of the 3 to 20 m fractions were 0.72±0.05, 0.83±0.05, and 0.34±0.04 m · d-1, respectively, and rates for the 20 to 102 m fraction were 1.50±0.21, 1.65±0.14, and 0.95±0.22 m · d-1, respectively. At all depths sampled, the 20 to 102 m size fraction was observed to sink significantly (P<0.01) faster than the 3 to 20 m fraction. considering vertical variability, both size fractions were observed to have significantly (P<0.01) lower sinking rates at 71 m than at more shallow depths. The finding of lower sinking rates in the region which lies just above the subsurface chlorophyll maximum provides empirical support for the hypothesis that variations in phytoplankton buoyancy may be related to the maintenance of this feature which is typical in oceanic environments. Analysis of sinking rate traces describes the distributions of specific sinking velocities for each size fraction and their variation.Oceanic Institute Contribution No. 162  相似文献   

14.
210Po and 210Pb concentrations in fecal pellets from the zooplanktonic euphausiid Meganyctiphanes norvegica are reported. The 210Po:210Pb activity ratio is 2.2±0.3, a value in good agreement with that found in suspended particulate matter in surface seawater. Estimates of 210Po and 210Pb removal times from the mixed layer by fecal pellets alone yield values which are of the same order of magnitude as the removal times for these nuclides by all routes. It is suggested that there is a high probability that zooplanktonic fecal pellets play a significant role in the removal of both these nuclides from the surface layers of the ocean.  相似文献   

15.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

16.
Radioactive waste disposal and nuclear testing concentrated in high latitudes in the northern hemisphere have resulted in the accumulation of radionuclides in Arctic marine ecosystems, but little is known of the consequences for marine biota in these waters. Under controlled laboratory conditions in May through September 1994, we examined the bioaccumulation in sea stars, Asterias forbesi (Desor), or the radionuclides 241Am, 57Co and 137Cs, all of which are important components of disposed radioactive wastes. Experiments at 2 and 12°C determined the relative importance of food (the bivalve, Macoma balthica) and water as sources of radionuclides and assessed the influence of temperature on radionuclide influx and efflux rates. The lower temperature greatly increased the retention of radionuclides ingested with food; for instance, the biological half-life (tb 1/2) of 241Am in the sea stars was 31 d at 12°C, but was virtually infinite at 2°C. Retention of ingested 57Co was also increased at 2°C (tb 1/2=41 d). 137Cs was not accumulated from food. Low temperature significantly reduced net influx rates of 137Cs from water, but did not affect net uptake of 241Am or 57Co. Temperature had little effect on the retention of all three isotopes obtained from the dissolved phase. These experiments suggest that extrapolation of results of previous radioecological studies, conducted at warmer temperatures, to polar or temperate winter environments may be problematic, and that nuclear waste isotopes obtained through trophic transfer may be retained far more efficiently in high latitude marine biota than by fauna from warmer ecosystems.  相似文献   

17.
Five sediment traps were moored at depths of 740, 940, 1 440, 3 440 and 4 240 m for 7 d in December 1982 at Station 5 in the eastern North Pacific about 400 km from San Francisco. Dark green sinking particles enclosed in tough membrane consisted of mostly coccolithophores with some diatoms, dinoflagellates and chrysophytes. The average size of the particles was 10x5x2 mm. These characteristics indicate that the particles were fecal pellets of salp inhabiting the surface waters. Vertical fluxes of the organic carbon and nitrogen through sinking of the salp fecal pellets ranged from 6.7 to 23 mgC m-2 d-1 and from 0.88 to 3.2 mgN m-2 d-1, respectively. These values were several times higher than those determined in other oceanic areas by sediment trap experiments. Hydrocarbons consisting of short-chain n-alkanes (n-C15-C20) with n-C17, the most predominant component, heneicosa-hexaene (n-C21:6), br-C25 alkenes and long-chain n-alkanes (n-C21-C30), without any odd or even carbon number predominance, were found from five depths. The presence of short-chain n-alkanes and n-C21:6 indicated that phytoplankton in the surface waters was a primary source of organic matter in the sinking particles. Two isomers of br-C25:3 and br-C25:4 alkenes found in these particles also indicated that br-C25 alkenes were the important biological marker of fecal pellet of zooplankton. The distribution pattern of the long-chain n-alkanes suggested that the sinking particles may be affected by bacteria to some extent. Fatty acids of the sinking particles were separated into free, triglyceride and wax ester fractions consisting of mono- and poly-unsaturated, and saturated fatty acids, with a range from C14 to C30. Concentrations of mono- and poly-unsaturated fatty acids decreased more rapidly toward the deep than those of saturated fatty acids, which cause low ratios of mono- and poly-unsaturated fatty acids/saturated fatty acids. This indicates that unsaturated fatty acids were more rapidly decayed by marine microbes than saturated fatty acids in the deep water, despite the fact that a significant amount of unsaturated fatty acids still remained in the sinking particles collected from the deep waters. Our results revealed that the salp fecal pellet plays an important role in supplying foods to organisms in intermediate and deep seas.  相似文献   

18.
The sinking rates of fecal matter from 7 southern California midwater fish species were investigated. Feces were obtained from 162 specimens of Stenobrachius leucopsarus, Triphoturus mexicanus, Leuroglossus stilbius, Lampanyctus ritteri, Argyropelecus affinis and Parvilux ingens, which were collected in the Santa Barbara and San Clemente Basins between 1977 and 1979. In addition, feces obtained from 6 laboratory-maintained specimens of the midwater zoarcid Melanostigma pammelas were used for repeated sinking-rate measurements. The mean of the measured sinking rates for all species was 1.19 cm s-1 (1 028 m d-1), which is much higher than the known descent rates of euphausiid and copepod fecal pellets and of most other particulate organic detritus. Dissolution characteristics were also investigated for fecal matter from 4 species collected by the same series of net hauls: S. leucopsarus, T. mexicanus, A. affinis, and Sternoptyx obscura. The release of dissolved organic compounds from this material is low and does not represent a significant output during the relatively short time required to sink through the water column. These findings suggest that midwater fish fecal matter may represent a major source of organic transfer between the pelagic community and the benthos.  相似文献   

19.
Rates of fecal pellet production have been recorded from seven species of oceanic salps feeding on natural diets. Expressed as g C defecated per mg salp body C per hour, the values range between 3.7 and 27.7. Carbon: nitrogen ratios of the salp fecal pellets average 11.4; the organic matter of the pellets is mainly protein and carbohydrate. Sinking velocities of the pellets are very high, ranging from 320 to 2 238 m d-1 for pellets from three species. However, the pellets sink slower than would be predicted from extrapolation of rates for crustacean pellets, probably due to the shape of the pellets and their density. The high rates of defecation, large size and rapid sedimentation of salp fecal pellets make them likely mechanisms for rapid transport of small particulate matter from surface waters to deep water and the benthos.  相似文献   

20.
A mooring system consisting of an in situ fluorometer at a depth of 50 m and a time-series sediment trap at a depth of 110 m was deployed at the sediment trap site (70°11.536'S; 24°18.679'E; water depth: 300 m) in Breid Bay, Antarctica in austral summer from 28 December 1985 to 13 February 1986. Sinking particles, consisting of diatoms (mainly Thalassiosira antarctica), were analyzed for organic materials, stable carbon and nitrogen isotopes. Vertical fluxes of organic carbon and nitrogen were determined to be within the ranges of 12.3 to 116 mg C m-2 d-1 and 1.79 to 15.4 mg N m-2 d-1, respectively, with maxima in the middle of January 1986, after which time the organic carbon and nitrogen fluxes tended to decrease with a steep gradient. High values of 13C were found in the organic matter of the sinking particles collected before the middle of January, indicating that the organic matter was derived from the diatoms in the logarithmic phase of their growth. Increased abundance of glucose was found in the water-extractable carbohydrate, which was one of the sinking particles collected in the middle of January. This fact clearly indicated that the diatoms were no longer in the growth phase but rather in the stationary phase, because reserved glucan as well as various cellular organic materials were reportedly accumulated within the algal cells in the stationary phase. Fifteen species of protein amino acids with trace amounts of -alanine, -aminobutyric acid and ornithine were found in the sinking particles upon acid hydrolysis, but the amino acid composition of these samples had not been affected much by biological agents. The essential amino acid index was calculated for the sinking particles collected in the course of the sediment trap experiment. The indices obtained indicated that the sinking particles collected in Breid Bay were more ecologically significant than the sinking and suspended particles from deep waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号