首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
The effectiveness of 18 alternative technologies for reducing odor dispersion at and beyond the boundary of swine facilities was assessed in conjunction with an initiative sponsored through agreements between the Attorney General of North Carolina and Smithfield Foods, Premium Standard Farms, and Frontline Farmers. The trajectory and spatial distribution of odor emitted at each facility were modeled at 200 and 400 m downwind from each site under two meteorological conditions (daytime and nighttime) using a Eulerian-Lagrangian model. To predict the dispersion of odor downwind, the geographical area containing the odorant sources at each facility was partitioned into 10-m2 grids on the basis of satellite photographs and architectural drawings. Relative odorant concentrations were assigned to each grid point on the basis of intensity measurements made by the trained odor panel at each facility using a 9-point rating scale. The results of the modeling indicated that odor did not extend significantly beyond 400 m downwind of any of the test sites during the daytime when the layer of air above the earth's surface is usually turbulent. However, modeling indicated that odor from all full-scale farms extended beyond 400 m onto neighboring property in the evenings when deep surface cooling through long-wave radiation to space produces a stable (nocturnal) boundary layer. The results also indicated that swine housing, independent of waste management type, plays a significant role in odor downwind, as do odor sources of moderate to moderately high intensity that emanate from a large surface area such as a lagoon. Human odor assessments were utilized for modeling rather than instrument measurements of volatile organic compounds (VOCs), hydrogen sulfide, ammonia, or particulates less than 10 microm in diameter (PM10) because these physical measurements obtained simultaneously with human panel ratings were not found to accurately predict human odor intensity in the field.  相似文献   

3.
ABSTRACT

The following models of odor intensity for swine units were evaluated: the Weber-Fechner law model, the power law model, the Stevens model, and the Beidler model. Data were collected from four swine rooms (farrowing, finisher, gestation, and nursery) and odor threshold dilution ratios were measured by a panel using a dynamic forced-choice olfactometer. Odor intensity scales were determined by eight panelists using a six-point category scale method. A nonlinear parameter estimation method was used to estimate the parameters in each of the models. The widely used Weber-Fechner law did not adequately fit the data of odor intensity and threshold. Both the power law and the Beidler models described the data effectively, but the Beidler model showed the best fit of the data and was used as the model to represent the relationship between odor intensity and threshold dilution ratio for swine buildings.  相似文献   

4.
Previous studies on solids/liquid (S-L) separation for odor control from swine manure indicated that the practice might not technically be feasible because of the complexity of removing the fine particles, which are usually the major source of the odor problems. This study coupled S-L separation by sedimentation with an aeration treatment to quickly break down the fine as well as dissolved solids. Results showed that S-L separation of manure prior to aeration, at the same level of aeration, took only 1.5 days compared to 3 days needed for the control, to bring down volatile fatty acids (VFAs) to the "threshold of unacceptable level". In addition, it took 2.3 and 5 aeration-days for VFAs to reach the "acceptable level" for the separated liquid manure and the control, respectively. Results also showed that within the three weeks of post-aeration storage, the VFAs in the separated liquid manure consistently stayed 13.5 folds below the acceptable level. In the unseparated manure, the VFAs gradually increased upwards from 2.2 folds below acceptable level achieved at the end of aeration treatment, to 1.38 folds below the acceptable level at the end of the third week of storage and looked poised to definitely rise above the acceptable level in a matter of days. A strong relationship (R=0.99) between pH and the VFAs in the manure suggested that; degradation of VFAs rendered manure more basic as shown by the increase in pH. After only three days of aeration, the oxidation reduction potential (ORP) in the separated liquid manure stabilized at a much higher level of -15 mV, while the ORP in unseparated manure stabilized at a much lower level of -200 mV. The S-L separation treatment thus significantly improves the oxygen transfer efficiency, which in turn significantly reduces the aeration power needed to maintain adequate ORP if prolonged aeration is desired.  相似文献   

5.
Odor emissions during manure spreading events have become a source of concern, particularly where farms are located nearby urban areas. The objective of the present study was to compare odor concentrations and odor emission rates due to pig manure application using two different types of applicators, a sub-surface deposition system and a conventional splash-plate applicator. Air samples were collected using a Surface Isolation Flux Chamber and the "bag-in-vacuum chamber" techniques, at 0.5, 1.5 and 2.5 hours after manure application. A three-station forced-choice dynamic dilution olfactometer was used by an odor panel for determining odor concentration. Preliminary results indicated that with the sub-surface deposition system applicator odor emission rate was reduced by 8% to 38% compared to that of the conventional splash-plate applicator. The highest reduction in odor strength and odor emission rate was observed in the most offensive period after manure application. The sub-surface deposition system may be a solution for hog producers who wish to reduce odor complaints from applying manure without the cost and problems associated with deep injection systems.  相似文献   

6.
The marker variables, Ellenberg Nitrogen Index, nitrous oxide and nitric oxide fluxes and foliar nitrogen, were used to define the impacts of NH3 deposition from nearby livestock buildings on species composition of woodland ground flora, using a woodland site close to a major poultry complex in the UK. The study centred on 2 units in close proximity to each other, containing 350,000 birds, and estimated to emit around 140,000 kg N year(-1) as NH3. Annual mean concentrations of NH3 close to the buildings were very large (60 microg m(-3)) and declined to 3 microg m(-3) at a distance of 650 m from the buildings. Estimated total N deposition ranged from 80 kg N ha(-1) year(-1) at a distance of 30 m to 14 kg N ha(-1) year(-1) at 650 m downwind. Emissions of N2O and NO were 56 and 131 microg N m(-2) h(-1), respectively at 30 m and 13 and 80 microg N m(-2) h(-1), respectively at 250 m downwind of the livestock buildings. Species number in woodland ground flora downwind of the buildings remained fairly constant for a distance of 200 m from the units then increased considerably, doubling at a distance of 650 m. Within the first 200 m downwind, trends in plant species composition were hard to discern because of variations in tree canopy composition and cover. The mean Ellenberg N Index ranged from 6.0 immediately downwind of the livestock buildings to 4.8 at 650 m downwind. The mean abundance weighted Ellenberg N Index also declined with distance from the buildings. Tissue N concentrations in trees, herbs and mosses were all large, reflecting the substantial ammonia emissions at this site. Tissue N content of ectohydric mosses ranged from approximately 4% at 30 m downwind to 1.6% at 650 m downwind. An assessment of the relative merits of the three marker variables concludes, that while Ellenberg Index and trace gas fluxes of N2O and NO give broad indications of impacts of ammonia emissions on woodland vegetation, the application of a critical foliar N content for ectohydric mosses is the most useful method for providing spatial information which could be of value to policy developers and planners.  相似文献   

7.
To obtain annual odor emission profiles from intensive swine operations, odor concentrations and emission rates were measured monthly from swine nursery, farrowing, and gestation rooms for a year. Large annual variations in odor concentrations and emissions were found in all the rooms and the impact of the seasonal factor (month) was significant (P < 0.05). Odor concentration was low in summer when ventilation rate was high but high in winter when ventilation rate was low, ranging from 362 (farrowing room in July) to 8934 (nursery room in December) olfactory unit (OU) m(-3). This indicates that the air quality regarding odor was significantly better in summer than that in winter. Odor emission rate did not show obvious seasonal pattern as odor concentration did, ranging from 2 (gestation room in November) to 90 (nursery room in April) OU m(-2) sec(-1); this explains why the odor complaints for swine barns have occurred all year round. The annual geometric mean odor concentration and emission rate of the nursery room was significantly higher than the other rooms (P < 0.05). In order to obtain the representative annual emission rate, measurements have to be taken at least monthly, and then the geometric mean of the monthly values will represent the annual emission rate. Incorporating odor control technologies in the nursery area will be the most efficient in reducing odor emission from the farm considering its emission rate was 2 to 3 times of the other areas. The swine grower-finisher area was the major odor source contributing 53% of odor emission of the farm and should also be targeted for odor control. Relatively positive correlations between odor concentration and both H2S and CO2 concentrations (R(2) = 0.58) means that high level of these two gases might likely indicate high odor concentration in swine barns.  相似文献   

8.
9.
This study was conducted to determine both optimal settings applied to the plume dispersion model, AERMOD, and a scalable emission factor for accurately determining the spatial distribution of hydrogen sulfide concentrations in the vicinity of swine concentrated animal feeding operations (CAFOs). These operations emit hydrogen sulfide from both housing structures and waste lagoons. With ambient measurements made at 4 stations within 1 km of large swine CAFOs in Iowa, an inverse-modeling approach applied to AERMOD was used to determine hydrogen sulfide emission rates. CAFO buildings were treated as volume sources whereas nearby lagoons were modeled as area sources. The robust highest concentration (RHC), calculated for both measured and modeled concentrations, was used as the metric for adjusting the emission rate until the ratio of the two RHC levels was unity. Utilizing this approach, an average emission flux rate of 0.57 μg/m(2)-s was determined for swine CAFO lagoons. Using the average total animal weight (kg) of each CAFO, an average emission factor of 6.06 × 10(-7) μg/yr-m(2)-kg was calculated. From studies that measured either building or lagoon emission flux rates, building fluxes, on a floor area basis, were considered equal to lagoon flux rates. The emission factor was applied to all CAFOs surrounding the original 4 sites and surrounding an additional 6 sites in Iowa, producing an average modeled-to-measured RHC ratio of 1.24. When the emission factor was applied to AERMOD to simulate the spatial distribution of hydrogen sulfide around a hypothetical large swine CAFO (1M kg), concentrations 0.5 km from the CAFO were 35 ppb and dropped to 2 ppb within 6 km of the CAFO. These values compare to a level of 30 ppb that has been determined by the State of Iowa as a threshold level for ambient hydrogen sulfide levels.  相似文献   

10.
ABSTRACT

To obtain annual odor emission profiles from intensive swine operations, odor concentrations and emission rates were measured monthly from swine nursery, farrowing, and gestation rooms for a year. Large annual variations in odor concentrations and emissions were found in all the rooms and the impact of the seasonal factor (month) was significant (P < 0.05). Odor concentration was low in summer when ventilation rate was high but high in winter when ventilation rate was low, ranging from 362 (farrowing room in July) to 8934 (nursery room in December) olfactory unit (OU) m?3. This indicates that the air quality regarding odor was significantly better in summer than that in winter. Odor emission rate did not show obvious seasonal pattern as odor concentration did, ranging from 2 (gestation room in November) to 90 (nursery room in April) OU m?2 sec?1; this explains why the odor complaints for swine barns have occurred all year round. The annual geometric mean odor concentration and emission rate of the nursery room was significantly higher than the other rooms (P < 0.05). In order to obtain the representative annual emission rate, measurements have to be taken at least monthly, and then the geometric mean of the monthly values will represent the annual emission rate. Incorporating odor control technologies in the nursery area will be the most efficient in reducing odor emission from the farm considering its emission rate was 2 to 3 times of the other areas. The swine grower-finisher area was the major odor source contributing 53% of odor emission of the farm and should also be targeted for odor control. Relatively positive correlations between odor concentration and both H2S and CO2 concentrations (R 2 = 0.58) means that high level of these two gases might likely indicate high odor concentration in swine barns.

IMPLICATIONS The emissions of air pollutants including odors, greenhouse gases, and toxic gases have become a major environmental issue facing animal farms in the U.S.A. and Canada. To ensure the air quality in the vicinity of intensive livestock farms, air dispersion models have been used to determine setback distances between livestock facilities and neighboring residences based on certain air quality requirement on odor and gases. Due to the limited odor emission data available, none of the existing models can take account of seasonal variations of odor emissions, which may result in great uncertainties in setback distance calculations. Therefore, the obtained seasonal odor and gas emission rates by this study can be used by the government regulatory organizations and researchers in air dispersion modeling to get improved calculation of setback distances.  相似文献   

11.
Panel Discussion     
A stack design procedure is developed which accounts for the effect of plume interception by downwind buildings, and which provides information on effluent concentrations in a form useful to planning authorities. The information presented in this paper is directed to engineers carrying out stack designs for locations where downwind buildings are of comparable height to the stack. A wind tunnel investigation using tracer gas techniques indicates that, for a plume at building height, downwash on the upwind face of a building causes the high concentrations observed near the roof to be transported to ground level. The effect of a plume on elevated points is determined by the concept of the minimum descent height of the maximum allowable ambient concentration isopleth. This minimum descent height, computed using Gaussian plume dispersion theory, defines a building height below which pollutant concentrations will always lie within safe limits. A case study is presented for the use of the design procedure for a small thermal power plant in an urban area.  相似文献   

12.
Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

13.
Akio Yasuhara 《Chemosphere》1980,9(9):587-592
Odor similarity of the synthetically prepared solutions and the extract from solid swine manure showed that the main components for odor of solid swine manure are carboxylic acids and sulfides and that p-cresol increases the malodor and skatole modifies the nature of the malodor.  相似文献   

14.
以养殖场沼泥为接种物,构建了乙二胺、三氯化铁改性碳毡阳极的单室无膜微生物燃料电池,探讨了2种阳极改性电池的产电规律,考察了其去除养殖废水中COD、氨氮的效果以及臭味的表观性状变化。结果表明,以葡萄糖为底物时,乙二胺、三氯化铁改性阳极微生物燃料电池在启动20 d和22 d后分别达到稳定,输出电压分别为0.514 V和0.527V(外阻为500Ω),对应输出功率密度分别为332 mW/m2和349 mW/m2。逐渐增大废水投加比例至原水时,2个电池的最大功率密度分别为208 mW/m2和158 mW/m2,COD去除率分别为85%和78%,氨氮去除率分别为52%和45%。此外,养殖废水的臭味去除效果明显。因此,构建的2种改性阳极微生物燃料电池可以利用养殖废水产电,同时使水质得到一定程度的净化。  相似文献   

15.
Sorption of tylosin onto swine manure   总被引:2,自引:0,他引:2  
Kolz AC  Ong SK  Moorman TB 《Chemosphere》2005,60(2):284-289
Sorption of tylosin was conducted on manure solids (<2 mm) and colloidal materials (<1.2 microm) collected from open (OL) and covered (CL) anaerobic swine manure lagoons. The aqueous concentration of tylosin in the sorption studies bracket the levels expected in lagoons, between 1 mgl(-1) and 30 mgl(-1). Sorption isotherms were found to be slightly non-linear for 2 mm solids, with Freundlich distribution coefficients (K(f)) of 39.4 with n=1.32 for CL slurry and 99.5 with n=1.02 for OL. These values are comparable to those reported for loam soils, but higher than those reported for sandy or clay soils and lower than those reported for fresh manure. Normalization of K(d) to the organic carbon content of the solids gave K(oc) values of 570 lkg(-1) and 818 lkg(-1), for CL and OL solids, respectively. The K(d) and K(f) values were not significantly different between colloids and 2 mm solids in OL slurry, but were significantly different in CL due to the non-linearity of the colloid isotherm. Based on the K(d) values obtained and comparing the K(d) values of other antibiotics, tylosin is strongly sorbed to manure, and would be more mobile than tetracyclines, but less mobile than sulfonamides, olaquindox, and chloramphenicol. However, tylosin mobility may be facilitated through transport with colloidal manure materials.  相似文献   

16.
Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.  相似文献   

17.
18.
Abstract

Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

19.
Setback distance has been used as an effective tool to avoid odor nuisance from livestock operations. Many setback distances were guidelines that were determined by empirical methods that are considered to be lack of science base. Air dispersion models have been used to determine setback distances; however, these models do not consider the short-time fluctuations of odor. A livestock odor dispersion model (LODM) was developed to consider the short-time variations of odor and predict occurrence frequency for certain levels of odor. In this study, this model was used to predict the occurrence frequency for various levels of odor in the vicinity (10 km) of a swine farm. Using selected odor criteria, setback distances between the swine farm and nearby communities were defined. Results indicate that the LODM can be used as an effective tool to determine setback distances.  相似文献   

20.
It is a common practice in the midwestern United States to raise swine in buildings with under-floor slurry storage systems designed to store manure for up to one year. These so-called "deep-pit" systems are a concentrated source for the emissions of ammonia (NH3), hydrogen sulfide (H2S), and odors. As part of a larger six-state research effort (U.S. Department of Agriculture-Initiative for Future Agriculture and Food Systems Project, "Aerial Pollutant Emissions from Confined Animal Buildings"), realtime NH3 and H2S with incremental odor emission data were collected for two annual slurry removal events. For this study, two 1000-head deep-pit swine finishing facilities in central Iowa were monitored with one-year storage of slurry maintained in a 2.4 m-deep concrete pit (or holding tank) below the animal-occupied zone. Results show that the H2S emission, measured during four independent slurry removal events over two years, increased by an average of 61.9 times relative to the before-removal H2S emission levels. This increase persisted during the agitation process of the slurry that on average occurred over an 8-hr time period. At the conclusion of slurry agitation, the H2S emission decreased by an average of 10.4 times the before-removal emission level. NH3 emission during agitation increased by an average of 4.6 times the before-removal emission level and increased by an average of 1.5 times the before-removal emission level after slurry removal was completed. Odor emission increased by a factor of 3.4 times the before-removal odor emission level and decreased after the slurry-removal event by a factor of 5.6 times the before-removal emission level. The results indicate that maintaining an adequate barn ventilation rate regardless of animal comfort demand is essential to keeping gas levels inside the barn below hazardous levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号