首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT: Polyacrylamide (PAM) has been demonstrated to greatly reduce erosion in furrow irrigation, but much less is known about its effectiveness on the much steeper slopes typical of construction sites. The purpose of this study was to determine if anionic PAM would enhance erosion control either alone on bare soil or in combination with four types of ground covers commonly used for grass establishment: straw, straw erosion control blanket (ECB), wood fiber, and mechanically bonded fiber matrix (MBFM). Tests were conducted under natural rainfall and vegetation on a 4 percent slope (bare soil, straw, ECB, and MBFM) or using a rainfall simulator (bare soil, straw, wood fiber, MBFM) on either 10 percent or 20 percent slope on three different soil substrates. All ground cover treatments were evaluated with and without PAM applied in solution at 19 kg/ha. The straw, ECB, and MBFM significantly reduced runoff volume, average turbidity, and total sediment lost over five rainfall events on the vegetated plots. The addition of PAM to ground covers only occasionally had significant effects on runoff parameters but did significantly increase vegetative coverage overall. The rainfall simulator tests produced similar results after four events, with the straw, wood fiber, and MBFM all having significantly lower turbidity than the bare soil. The PAM significantly reduced turbidity for both the first and second events but did not consistently improve runoff quality after multiple rainfall events for any ground cover‐soil combinations tested. Separate tests of PAM applied before or after straw did not indicate a clear advantage of either approach, but runoff turbidity was often significantly reduced with PAM, especially at the 20 percent slope. Turbidity reductions were attributed to flocculation of eroded sediment.  相似文献   

2.
Heavy metal accumulation in soil poses serious environmental and health risks, as metals are carried with eroded soils. In this study, 17 different soil erosion and sediment control products were investigated for their effectiveness in controlling transport of particulate heavy metals (Cu, Zn, Pb, Cd). Among the treatments investigated, wood mulch and tackifiers were found to be the most effective in reducing total suspended solids (TSS) and total heavy metal losses. They reduced TSS to an undetectable level during short-term simulation tests. Paper mulch was the only treatment that had no significant reduction in both total metal loss and TSS. Fiber rolls, silt fences, and gravel bags were effective in reducing sediment loss. Although the netting/blanket treatments were not effective in reducing total metal discharge, they significantly reduced sediment loss compared with the control.  相似文献   

3.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

4.
ABSTRACT: A rainfall simulator was used on runoff plots to study the effects of simulated canopy cover, trampling disturbance, and soil type on nil and interrill erosion. Sandy loam soil was more erodible than clay loam soil. Furthermore, the simulated canopy cover signffi-Soilfactorsrelatedtonil cantly influenced nil and interrill erosion. The effect of trampling on rill and interrill erosion varied with soil type (clay loam versus sandy loam) and erosion type (nh versus interrill erosion). On large plots, where both nil and internill erosion were involved, 30 percent trampling significantly increased soil loss. However, on small plots, 30 percent trampling significantly reduced interrill erosion.  相似文献   

5.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils.  相似文献   

6.
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.  相似文献   

7.
Soil loss and surface runoff patterns were studied in erosion plots developed on manmade steep slopes (60 percent) over three years (1997–2000) in which rainfall ranged from 1338.4 to 1429.2 mm/year. Surface runoff and soil loss was examined under three different rainfall intensity classes. Runoff was mainly controlled by the rainfall distribution pattern on the seasonal scale. The soil loss was influenced by runoff during the first year. Both soil loss and runoff were reduced due to bioengineering measures in the first year irrespective of species planted. In the third year, combined effects of growth of grasses on protected plots, soil compaction and sediment exhaustion was noticed on runoff and soil loss. This was reflected by reduction in the runoff and soil loss from untreated and treated plots. In the high intensity class, reduction in runoff in treated plots was about 50 percent in three years and reduction in soil loss ranged between 94–95 percent in all plots. Physical treatment with brushwood structures was more efficient in erosion control in the low intensity class.  相似文献   

8.
ABSTRACT: The two‐dimensional soil erosion model CASC2D‐SED simulates the dynamics of upland erosion during single rainstorms. The model is based on the raster‐based surface runoff calculations from CASC2D. Rainfall precipitation is distributed in time and space. Infiltration is calculated from the Green‐Ampt equations. Surface runoff is calculated from the diffusive wave approximation to the Saint‐Venant equations in two‐dimensions. Watershed data bases in raster Geographical Information System (GIS) provide information on the soil type, size fractions, soil erodibility, cropping management, and conservation practice factors for soil erosion calculations. Upland sediment transport is calculated for the size fractions (sand, silt, and clay), and the model displays the sediment flux, the amount of suspended sediment, and the net erosion and deposition using color graphics. The model has been tested on Goodwin Creek, Mississippi. The peak discharge and time to peak are within ± 20 percent and sediment transport rates within ?50 percent to 200 percent.  相似文献   

9.
Evaluation of compost blankets for erosion control from disturbed lands   总被引:1,自引:0,他引:1  
Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans.  相似文献   

10.
ABSTRACT: Few studies have addressed sediment discharge due to interrill erosion from natural and minimally disturbed alpine and subalpine forested watersheds. Infiltration, runoff, and surface erosion of two Tahoe Basin soils under several conditions were investigated using rainfall simulation. A significant three-way interaction among soil type, plot condition, and slope was identified. Although high erodibiity was commonly associated with disturbance and/or high slope, this was not always the case. Soil type, plot condition, slope, and duration of the event were all found to be important factors in determining the amount of erosion. Decreased water clarity in Lake Tahoe has been partly attributed to increased algal growth associated with surface runoff and erosion from adjacent watersheds. Interpretive evaluation for resource management planning should be event based and carefully delineated on a sitespecific basis.  相似文献   

11.
There is growing interest in evaluating the effects of corn silage harvesting methods on erosion control. Increasing the silage cutting height will increase residue cover and could conceivably minimize off-site migration of sediments compared with conventional silage harvesting. The effects of residue level and manure application timing on runoff and sediment losses from no-till corn were examined. Treatments included conventional corn grain (G) and silage (SL) and nonconventional, high-cut (60-65 cm) silage (SH). Corn harvesting treatments were subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm/h; 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots collected, and a subsample analyzed for sediment concentration and aggregate size distribution. Runoff volume was inversely related to residue cover. Manure addition to silage plots reduced spring runoff by 71 to 88%, attributable to an increase in soil organic matter content, compared with SH-N and SL-N. Differences in sediment concentration between SH and SL were not significant. For silage plots, spring-applied manure had the greatest influence on sediment export reducing it by 84 to 93% in spring runoff compared with corresponding N plots. Sediment loads were also 85 to 97% lower from SH-S compared with SL-N in all four seasons. Except for spring 2003, sediment export was lower from G compared with SL. The combination of manure and higher residue associated with high-cut silage often lowered sediment export compared with low-cut silage. Nearly identical aggregate size distributions were observed in sediments from SH and SL plots. High residue levels combined with spring-applied manure led to enrichment in the clay-sized fraction of runoff sediment. Recently applied manure and higher residue levels achieved by high-cutting silage can substantially lower sediment losses in spring runoff when soil is most susceptible to erosion.  相似文献   

12.
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration.  相似文献   

13.
ABSTRACT: Few studies have addressed the natural pollution potential of pristine subalpine forested watersheds on a site-specific basis. Consequently, specific source and amounts of nutrient discharge to tributaries of the Tahoe Basin are difficult to identify. The sediment content and nitrate and ammonium levels in surface runoff from two soil types (Meeks and Umpa), four plot conditions (wooded natural and disturbed, open natural and disturbed), and three slopes (gentle, moderate, and steep) were studied using rainfall simulation that applied a 9 cm h1, 1-h event. A significant (P ≤ 0.005) two-way interaction between soil type and plot condition affected runoff nitrate concentration. Runoff from natural or disturbed open plots contained significantly (P = 0.05) greater nitrate than wooded plots. Peak concentrations of nitrate commonly occurred during early runoff, suggesting that peak nitrate discharge to Lake Tahoe tributaries can be expected during early runoff from snowmelt and summer precipitation events. The highest nitrate runoff concentration and 1-h cumulative loading from the 0.46 m2 plots were 6.7 mg L-1 (Umpa, open natural, 15–30 percent slope), and 0.7 mg (Umpa, open natural, ≥ 30 percent slope), respectively. Ammonium in surface runoff was generally below detection limits (≤ 0.05 μg L?1). No statistical relationship between runoff nitrate and sediment discharge was detected.  相似文献   

14.
The selective removal of phosphorus from soil: is event size important?   总被引:1,自引:0,他引:1  
Data from the Woburn Erosion Reference Experiment (Bedfordshire, UK) were used to test the hypothesis that losses of phosphorus (P) in small erosion events are as great as those in infrequent large events, and to examine the effect of storm characteristics on the selective enrichment of P in eroded sediment. For almost every plot event in the period 1988 to 1994, the clay-sized fraction of the sediment was enriched compared with the soil of the plots. There was more variation in clay enrichment for smaller erosion events than for larger ones. The clay and P contents of the sediment were strongly correlated (p < 0.01), and there was a wider range of P concentrations in the sediment derived from small events than in that from large events. However, individual events resulting in small soil losses (< 100 kg) did not account for greater P losses than larger events (> 100 kg). The greater frequency of smaller events, combined with the likelihood of higher P concentrations in the sediment, therefore accounted for a greater proportion of the P lost over the 6-yr period than the infrequent large events. Phosphorus concentrations generally increased with increasing peak discharge and decreased with increasing event duration. For the same return period, P losses were generally greater from plots cultivated up and down the slope than from those cultivated across the slope. Overall, our results suggest that small erosion events should be controlled to prevent P contamination of surface waters and that the most effective means of doing this are by the introduction of minimal tillage techniques and across-slope cultivations.  相似文献   

15.
/ Various types of recreational traffic impact hiking trails uniquely and cause different levels of trail degradation; however, trail head restrictions are applied similarly across all types of packstock. The purpose of this study was to assess the relative physical impact of hikers, llamas, and horses on recreational trails. Horse, llama, and hiker traffic were applied to 56 separate plots on an existing trail at Lubrecht Experimental Forest in western Montana. The traffic was applied to plots at intensities of 250 and 1000 passes along with a no-traffic control under both prewetted and dry trail conditions. Soil erosion potential was assessed by sediment yield and runoff (using a Meeuwig type rainfall simulator), changes in soil bulk density, and changes in soil surface roughness. Soil moisture, slope, and rainfall intensity were recorded as independent variables in order to evaluate the extent that they were held constant by the experimental design. Horse traffic consistently made more sediment available for erosion from trails than llama, hiker, or no traffic when analyzed across wet and dry trail plots and high and low intensity traffic plots. Although total runoff was not significantly affected by trail user, wet trail traffic caused significantly greater runoff than dry trail traffic. Llama traffic caused a significant increase in sediment yield compared to the control, but caused erosion yields not significantly different than hiker traffic. Trail traffic did not increase soil compaction on wet trails. Traffic applied to dry trail plots generally resulted in a significant decrease in soil bulk density compared to the control. Decreased soil bulk density was negatively correlated with increased sediment yield and appeared to result in increased trail roughness for horse traffic compared to hiker or llama traffic. Differences described here between llama and horse traffic indicate that trail managers may want to consider managing packstock llamas independent of horses.KEY WORDS: Recreational impacts; Sediment yield; Trail degradation  相似文献   

16.
ABSTRACT: Control of runoff (reducing infiltration) and erosion at shallow land burials is necessary in order to assure environmentally safe disposal of low-level radioactive-waste and other waste products. This study evaluated the runoff and erosion response of two perennial grass species on simulated waste burial covers at Idaho National Engineering and Environmental Laboratory (INEEL). Rainfall simulations were applied to three plots covered by crested wheatgrass [Agropyron desertorum(Fischer ex Link) Shultes], three plots covered by streambank wheatgrass [Elymus lanceolatus(Scribner and Smith) Gould spp. lanceolaus], and one bare plot. Average total runoff for rainfall simulations in 1987, 1989, and 1990 was 42 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Average total soil loss for rainfall simulations in 1987 and 1990 was 105 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Total runoff and soil loss from natural rainfall and snowmelt events during 1987 were 25 and 105 percent greater, respectively, on streambank wheatgrass plots than on crested wheatgrass plots. Thus, crested wheatgrass appears to be better suited in revegetation of waste burial covers at INEEL than streambank wheatgrass due to its much lower erosion rate and only slightly higher infiltration rate (lower runoff rate).  相似文献   

17.
ABSTRACT: A rainfall simulator was used to study the effectiveness of no-till and fertilizer application method on reducing phosphorus (P) losses from agricultural lands. Simulated rainfall was applied to 12 experimental field plots, each 0.01 ha in size. The plots were divided into no-till and conventional tillage systems. Two fertilizer application methods, subsurface injection and surface application, were investigated for the two tillage systems. Phosphorus fertilizer was applied at a rate of 46 kg/ha, 24 to 48 hours before the start of rain simulation. Water samples were collected from the base of each plot and analyzed for sediment and P content. No-till was found to be very effective in reducing runoff and sediment losses. No-till reduced sediment loss and total runoff volume by 92 and 67 percent, respectively. Subsurface injection of fertilizer, as compared to surface application, reduced PO4 losses by 39 percent for no-till and by 35 percent for conventional tillage. The effect of tillage system on PO4 losses was not significant. Reductions in total-P (PT) losses due to no-till compared to the conventional tillage system were 89 and 91 percent for surface application and subsurface injection methods, respectively. Averaged across all fertilizer treatments, an equivalent of 0.9 and 8.9 percent of the P applied to the plots were lost from the no-till and conventional tillage plots, respectively.  相似文献   

18.
ABSTRACT: Runoff and sediment yield were collected from 100 plots during simulated rainfalls (100 mm/hr for 15 minutes) at antecedent soil moisture conditions. A clustering technique was used to stratify the variability of a single data set within a sagebrush‐grass community into four groups based on vegetation life form and amount of cover. The four cluster groups were grass, grass/shrub, shrub, and forb/grass and were found to be significantly different in plant height, surface roughness, soil bulk density, and soil organic matter. Stepwise multiple regression analyses were performed on the single data set and each cluster group. Results for individual groups resulted in more robust predictive equations for runoff (r2= 0.65–0.73) and sediment yield (r2= 0.37–0.91) than for equations developed from the single data set (r2= 0.56 for runoff and r2= 0.27 for sediment yield). The standard errors of the cluster group regression equations were also improved in three of the four group equations for both runoff and sediment yield compared to the single data set. Runoff was found to be significantly less (p >0.01) in the forb/grass group compared with other vegetation cluster groups, but this was influenced by four plots that produced little or no runoff. Sediment yield was not found to be significantly different among any cluster groups. Discriminant analysis was then used to identify important variables and develop a model to classify plots into one of the four cluster groups. The discriminant model could be incorporated into rangeland hydrology and erosion models. The percentage cover of grasses, shrubs, litter, and bare ground effectively stratified about 12 percent of the variation observed in runoff and 26 percent of the variability for sediment yield as determined by r2.  相似文献   

19.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   

20.
A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号