首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.  相似文献   

2.
A total of 34 zooplanktonic taxa were common in emergence trap, reentry trap, and net-tow samples taken in the lagoon of Heron Reef, Great Barrier Reef, between 27 February and 22 March and between 11 June and 4 July 1985. Twenty-nine of these taxa were classified as demersal (17 taxa), meroplanktonic and larval (10 taxa), or incidental (2 taxa). The remaining five multispecific groups yielded variable results. Differences were observed between two locations separated by 200 m, with emergence 2 to 62 times greater for 22 taxa at a deeper site with larger coral formations. Most zooplankters were more common (2 to 122 times) in samples from 1 m2 areas around 0.25 to 0.5 m2 patches of branching coral. However, two species of copepods, Pseudodiaptomus colefaxi and Metis holothuriae, were taken in greater numbers (3 to 12 times) from open sand. Seasonal increases (2 to 322 times) were observed for 13 adult taxa and 8 classes of larvae or juveniles in the summer and for 10 adult taxa and one larval group in the winter. Fourteen of the 17 demersal taxa and 4 groups of large larvae or juveniles emerged in numbers 2 to 323 times greater during lunar quarters or new moons. In contrast, 6 larval taxa and 4 groups of small or transparent adults displayed significant emergence during full moons. Five diurnal emergence patterns were shown by 27 taxa, with patterns varying primarily among lunar periods. The variety of taxon-specific patterns observed in this study highlight a need for caution when generalizing about demersal zooplankton.  相似文献   

3.
Altermatt F  Holyoak M 《Ecology》2012,93(5):1125-1133
Natural ecosystems often show highly productive habitats that are clustered in space. Environmental disturbances are also often nonrandomly distributed in space and are either intrinsically linked to habitat quality or independent in occurrence. Theoretical studies predict that configuration and aggregation of habitat patch quality and disturbances can affect metacommunity composition and diversity, but experimental evidence is largely lacking. In a metacommunity experiment, we tested the effects of spatially autocorrelated disturbance and spatial aggregation of patch quality on regional and local richness, among-community dissimilarity, and community composition. We found that spatial aggregation of patch quality generally increased among-community dissimilarity (based on two measures of beta diversity) of communities containing protozoa and rotifers in microcosms. There were significant interacting effects of landscape structure and location of disturbances on beta diversity, which depended in part on the specific beta diversity measures used. Effects of disturbance on composition and richness in aggregated landscapes were generally dependent on distance and connectivity among habitat patches of different types. Our results also show that effects of disturbances in single patches cannot directly be extrapolated to the landscape scale: the predictions may be correct when only species richness is considered, but important changes in beta diversity may be overlooked. There is a need for biodiversity and conservation studies to consider the spatial aggregation of habitat quality and disturbance, as well as connectivity among spatial aggregations.  相似文献   

4.
The spatial distribution of phytoplankton assemblages, chlorophyll, primary production and physical and chemical parameters were studied in the Pontevedra Ria in Galicia (NW Iberian Peninsula) from October 1997 to October 1998. In addition to the usual oceanographic periods described for the Galician Coast, two other periods were observed: a Prebloom or winter bloom, occurring during calm, sunny days in winter and a Continental period, related to the allochthonous intrusion of low salinity water from the Miño River in late spring. The phytoplankton biomass and production in both periods reached values of up to 145 mgChl-a m?2 and 3.6 gC m?2 day?1, respectively, which were similar to those found in summer upwelling blooms. Throughout the year, the phytoplankton biomass and primary production gradients along the ria’s axis were highly dependent on the balance between upwelling and runoff. When the latter prevailed, increased values were measured toward the inner ria, while the opposite pattern was observed during summer upwelling blooms. According to projections derived from climate models and the analysis of wind patterns, temperature and precipitation trends in the area, a drop in the productivity of the ria would be expected as a result of reduced upwelling intensity in summer and decreasing rainfall in spring. In any case the estuarine part of the ria would be the most seriously affected.  相似文献   

5.
H. Auel  W. Hagen 《Marine Biology》2002,140(5):1013-1021
During the "International Arctic Ocean Expedition 1991" (20 August-21 September 1991) mesozooplankton was sampled at six stations in the Nansen, Amundsen and Makarov Basins of the central Arctic Ocean from 1,500 m depth to the surface by multiple opening/closing net hauls. Total mesozooplankton abundance decreased from 268 ind. m-3 in the surface layer (0-50 m) to <25 ind. m-3 below 200 m depth. The small copepods Oithona similis and Microcalanus pygmaeus, as well as copepod nauplii, were most abundant close to the surface, while Oncaea borealis and Spinocalanus spp. frequently occurred at greater depth. Mesozooplankton dry mass (DM) integrated over the upper 1,500 m of the water column was surprisingly stable throughout the investigation area and measured 2.0ǂ.3 g DM m-2. Dry mass in the upper 50 m measured 20.9 mg m-3 and was dominated by Calanus hyperboreus (57.4%) and C. glacialis (21.1%). C. finmarchicus was very abundant only in the Nansen Basin. Below 200 m the calanoid copepods Metridia longa, Microcalanus pygmaeus and Pareuchaeta spp., the decapod Hymenodora glacialis and chaetognaths of the genus Eukrohnia were the principal contributors to biomass values of <1 mg DM m-3. Hence, vertical changes in abundance, biomass and species composition were much more pronounced than regional differences between the basins. Three different mesozooplankton communities were differentiated according to their faunistic composition and are discussed in context with the major water masses: Polar Surface Water, Atlantic Layer and Arctic Deep Water.  相似文献   

6.
This paper examines the interaction of spatial and dynamic aspects of resource extraction from forests by local people. Highly cyclical and varied across space and time, the patterns of resource extraction resulting from the spatial–temporal model bear little resemblance to the patterns drawn from focusing either on spatial or temporal aspects of extraction alone. Ignoring this variability inaccurately depicts villagers’ dependence on different parts of the forest and could result in inappropriate policies. Similarly, the spatial links in extraction decisions imply that policies imposed in one area can have unintended consequences in other areas. Combining the spatial–temporal model with a measure of success in community forest management—the ability to avoid open-access resource degradation—characterizes the impact of incomplete property rights on patterns of resource extraction and stocks.  相似文献   

7.
Understanding how plant species coexist in tropical rainforests is one of the biggest challenges in community ecology. One prominent hypothesis suggests that rare species are at an advantage because trees have lower survival in areas of high conspecific density due to increased attack by natural enemies, a process known as negative density dependence (NDD). A consensus is emerging that NDD is important for plant-species coexistence in tropical forests. Most evidence comes from short-term studies, but testing the prediction that NDD decreases the spatial aggregation of tree populations provides a long-term perspective. While spatial distributions have provided only weak evidence for NDD so far, the opposing effects of environmental heterogeneity might have confounded previous analyses. Here we use a novel statistical technique to control for environmental heterogeneity while testing whether spatial aggregation decreases with tree size in four tropical forests. We provide evidence for NDD in 22% of the 139 tree species analyzed and show that environmental heterogeneity can obscure the spatial signal of NDD. Environmental heterogeneity contributed to aggregation in 84% of species. We conclude that both biotic interactions and environmental heterogeneity play crucial roles in shaping tree dynamics in tropical forests.  相似文献   

8.
We document the distribution and abundance of seagrasses, as well as the intra-annual temporal patterns in the abundance of seagrasses and the productivity of the nearshore dominant seagrass (Thalassia testudinum) in the south Florida region. At least one species of seagrass was present at 80.8% of 874 randomly chosen mapping sites, delimiting 12,800 km2 of seagrass beds in the 17,000-km2 survey area. Halophila decipiens had the greatest range in the study area; it was found to occur over 7,500 km2. The range of T. testudinum was almost as extensive (6,400 km2), followed by Syringodium filiforme (4,400 km2), Halodule wrightii (3,000 km2) and Halophila engelmanni (50 km2 ). The seasonal maxima of standing crop was about 32% higher than the yearly mean. The productivity of T. testudinum was both temporally and spatially variable. Yearly mean areal productivity averaged 0.70 g m−2day−1, with a range of 0.05–3.29 g m−2 day−1. Specific productivity ranged between 3.2 and 34.2 mg g−1 day−1, with a mean of 18.3 mg g−1 day−1. Annual peaks in specific productivity occurred in August, and minima in February. Integrating the standing crop for the study area gives an estimate of 1.4 × 1011 g T. testudinum and 3.6 × 1010 g S. filiforme, which translate to a yearly production of 9.4 × 1011 g T. testudinum leaves and 2.4 × 1011 g S. filiforme leaves. We assessed the efficacy of rapid visual surveys for estimating abundance of seagrasses in south Florida by comparing these results to measures of leaf biomass for T. testudinum and S. filiforme. Our rapid visual surveys proved useful for quantifying seagrass abundance, and the data presented in this paper serve as a benchmark against which future change in the system can be quantified. Received: 30 January 2000 / Accepted: 24 July 2000  相似文献   

9.
Fiddler crabs consume the surficial microphytobenthos around their burrows during low tide. We studied the spatial and temporal feeding patterns in the species Uca uruguayensis by using sequences of digital pictures of feeding pellets accumulation. Data from 61 crabs, feeding without the interference of neighbors, were fitted to different models using Maximum Likelihood and Bayesian approaches. Initial feeding location was independent from the emergence location, and then, crabs continued holding a main feeding direction (clockwise or counterclockwise), suggesting a systematic mechanism that may avoid feeding over already processed sediment. Crabs used at least half of their potential feeding area, but these areas were heterogeneous. Both sexes developed similar feeding areas; however, females were faster and needed less time to feed than males, suggesting that males are time restricted. Our work also highlights the importance of incorporating other underlying mechanisms of the behavior of species into the study of feeding strategies.  相似文献   

10.
Lamb EG 《Ecology》2008,89(1):216-225
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition.  相似文献   

11.
Eight polymorphic microsatellite loci were analysed in six population samples from four locations of the Australian endemic brown tiger prawn, Penaeus esculentus. Tests of Hardy–Weinberg equilibrium were generally in accord with expectations, with only one locus, in two samples, showing significant deviations. Three samples were taken in different years from the Exmouth Gulf. These showed no significant heterogeneity, and it was concluded that they were from a single panmictic population. A sample from Shark Bay, also on the west coast of Australia, showed barely detectable differentiation from Exmouth Gulf (F ST = 0 to 0.0014). A northeast sample from the Gulf of Carpentaria showed low (F ST = 0.008) but significant differentiation from Moreton Bay, on the east coast. However, Exmouth Gulf/Shark Bay samples were well differentiated from the Gulf of Carpentaria/Moreton Bay (F ST = 0.047–0.063). The data do not fit a simple isolation by distance model. It is postulated that the east–west differentiation largely reflects the isolation of east and west coast populations that occurred at the last glacial maximum when there was a land bridge between north-eastern Australia and New Guinea.  相似文献   

12.
The distribution of epibenthic penaeid prawn postlarvae has previously been shown to relate to the degree of marine influences in the flora, sediment and water conditions in littoral and infralittoral habitats in Moreton Bay. The postlarvae are part of a complex faunal assemblage of approximately 400 mobile epibenthic species. Samples of the assemblage from stations situated throughout Moreton Bay were analysed by multivariable methods, to detect whether the environmental influences volated to the distribution of penaeid prawns, were related to the fauna as a whole. This was found to be so. The fauna occurred in two groups in areas of either less marine or more marine influences. Animals in the first group were less diverse, with distributions unrelated to depth or presence of seagrasses, but related to the level of marine influences between geographical areas sampled. Animals in the second group were closely related to depth and presence of seagrasses, but no overall differences were attributable to marine influeces apart from those attributable to depth. Temporal changes in species composition were smaller than spatial changes, and changes in relative abundance were, in both groups, related to differences between (i) summer and winter, and (ii) spring and the rest of the year.  相似文献   

13.
We measured spatial and temporal patterns of seed dispersal and seedling recruitment for 58 species in a grassland community to test whether seed dispersal could predict patterns of invasion after disturbance. For the 12 most abundant grasses, recruitment of native species was dependent on the propagule supply of both native and exotic species. Variability in seed rain on small spatial (1-10 m) and temporal (within season) scales led to qualitative differences in the outcome of disturbance colonization such that native species dominated disturbances when exotic seed supply was low but failed to establish when exotic seed supply was high. Local dispersal and spatial heterogeneity in species composition promoted coexistence of native and exotic species by creating refuges from high exotic seed supply within native dominated patches. Despite this, copious exotic seed production strongly limited recruitment of native species in exotic dominated patches. Most grasslands in California are presently dominated by exotic species, suggesting that competition at the seedling stage is a major barrier to native species restoration.  相似文献   

14.
Recent studies suggest that nearshore oceanographic conditions can have important effects on the structure of benthic communities. On Santa Cruz Island (SCI), CA, USA there is a persistent difference in mean annual sea surface temperature (SST) around the island due to its location at the confluence of opposing cold and warm ocean current systems. Over the course of a 4-year study (1997–2001) seawater nutrient and chl-a concentrations, algal tissue C:N ratios, recruitment and growth of filter-feeders (barnacles and mussels), and intertidal community structure were measured at six intertidal sites around the island. There were strong associations between remotely sensed SST and patterns of community structure. Macrophyte abundance was highest at sites with persistently low SST, while recruitment, abundance, and growth of filter-feeding invertebrates were strongly, positively correlated with SST. The cold-water sites were associated with higher nutrient concentrations and lower algal C:N ratios, particularly in the winter months. Values of chl-a were generally low and variable among sites, and were not correlated with the predominant SST gradient. Recruitment of barnacles and mussels was positively correlated with adult abundance across all sites. While detailed experimental studies are needed to further evaluate the mechanisms underlying community dynamics, these results indicate that the confluence of cold- and warm-water masses around SCI may determine the contrasting patterns of intertidal community structure.  相似文献   

15.
Spatial and temporal variation in recruitment of the compound ascidian Aplidium stellatum was examined on a shallow-water limestone outcropping in the Northeastern Gulf of Mexico from 1983 to 1985. Fifty-two percent of the recruits appeared on vertical surfaces, which were rare at this site. In the laboratory, tadpole larvae of A. stellatum consistently settled on vertical vs horizontal surfaces in a 2 to 1 ratio, regardless of the area of vertical surface offered. This settlement response was insufficient to account entirely for the field recruitment pattern, suggesting greater mortality of newly-settled individuals or larvae on horizontal vs vertical surfaces. Fifty-six percent of the variation in recruitment over 21 months could be explained by variation in the percentage of zooids brooding larvae in adult colonies. Over 28 consecutive months, the percentage of zooids brooding larvae was positively correlated with egg counts of the previous month (r 2=0.75), which in turn were weakly correlated with monthly average water temperature (r 2=0.36). These results suggest that larval production contributed substantially to temporal variation in recruitment of A. stellatum. The short larval life of tadpoles of A. stellatum and the relative isolation of the population were probably responsible for the correlation between recruitment and larval production.  相似文献   

16.
17.
The vertical structure of the ecosystem in the euphotic zone of the western Equatorial Pacific has been studied. The studies were based on a continuous sounding of the bioluminescence field, with simultaneous, vertically aimed sampling made with the aid of a 5l water bottle and plankton nets. The bioluminescence field has a two-maxima structure with a more pronounced and permanent lower maximum found in the oligotrophic regions as deep as 60 to 100 m. In the narrow (10 m) layer of maximum bioluminescence, the concentration of zooplankton, as well as the concentration, activity and production of bacteria and phytoplankton, are several times higher than those in immediately adjacent waters at greater or lesser depth. At the same time, the concentration of nutrient salts in that layer diminishes sharply and approaches zero in the overlying water. Analysis of the data obtained shows that the production processes above the lower maximum layer are dependent not only on the turbulent influx of nutrient salts from the underlying layers, but also on the horizontal supply from the zone of upwelling. A pelagic community, in its different time aspects from the moment of water ascending until its sinking in the convergence zone, is suggested as a common system for modelling.  相似文献   

18.
Seasonal variations in the microphytobenthic diatom community were investigated in an intertidal sand flat of a tropical marine environment influenced by monsoons. Cores of sediments were collected along the beach gradient: low tide, mid tide and high tide zone up to a depth of 15 cm.. Diatom abundance was lowest during the monsoons and highest during the post-monsoons and the early pre-monsoon season throughout the intertidal transect. Diatom diversity was highest at the mid tide, followed by the high and low tide zones. Diatoms were viable up to a depth of 15 cm throughout the intertidal transect. The diatom community included the pennates, the permanent residents of this area, centric genera, which lead an attached mode of life and also some planktonic genera, brought in from ambient waters. Among the pennates, Navicula and Amphora were the dominant genera whereas in the case of centrics, Thalassiosira dominated the community throughout the intertidal transect down to a 15 cm depth. . Grain size fractions, which served as predictors of some diatom genera changed with tidal zones. The effect of winds on the resuspension of the pennate diatoms was evident only at the low tide zone down to a depth of 5 cm . Chlorophyll a concentration proved to be a good predictor of both pennate and centric diatom abundance at the low tide zone down to a depth of 10 cm and at the mid tide zone down to a depth of 5 cm.. However, even though chlorophyll a concentrations failed to reveal any positive correlation with the diatom abundance at both the deeper sediment layers and the high tide zone, the fact that viable cells were present at these areas reveal that the diatoms adopt survival strategies, contributing significantly to the carbon budgets of such unstable habitats.  相似文献   

19.
Encrusting algae have been described as dominant space occupying species on rocky shores around the world. Despite their abundance, however, most studies classify species under generic names (e.g. Ralfsia sp.) or as a functional group (e.g. encrusting algae), thereby underestimating the number of species present and their ecological importance. Studies on six rocky shores of varying exposure, in Hong Kong, recorded eight common species of encrusting algae. The greatest abundance of encrusting algae was recorded on shores of intermediate exposure, where four distinct zonation bands could be identified; a cyanobacterial Kyrtuthrix-Zone in the upper midlittoral, a Bare-Zone below this, a Mixed-Zone in the lower midlittoral and a Coralline-Zone in the infralittoral fringe. Abundance declined on shores of greater and lower exposure to wave action, where bivalves and barnacles were competitively dominant. Certain species were found in greater abundance on exposed shores (e.g. Dermocarpa sp. and Hildenbrandia occidentalis), while others preferred more sheltered shores (e.g. Hildenbrandia prototypus and Kyrtuthrix maculans). With the exception of some cyanobacterial crusts, the abundance of encrusting algae was always greatest towards the low shore, an area of decreased physical stress and increased herbivore density. Zonation patterns showed seasonal variation associated with the monsoonal climate of Hong Kong. Most species increased in abundance during the cool season, while during the summer months the cover and vertical extent of encrusting algae decreased in relation to summer temperatures, although K. maculans increased in abundance during the summer. On Hong Kong shores, encrusting algae have a high species richness and exhibit within-functional group spatial and temporal variation which is mediated by herbivory and seasonal, physical stresses.  相似文献   

20.
Short-term temporal patterns of recruitment have been described in a variety of coral reef fishes and have often been related with lunar and tidal cycles. While the relative importance of lunar and tidal factors in determining recruitment patterns has been difficult to assess, most studies have been done in the Caribbean and Indo-Pacific, where tidal amplitudes are small. We studied the short-term temporal dynamics of fish recruitment at Gorgona Island (tropical eastern Pacific), where there is a large tidal amplitude (~4.4 m). Every other day during three consecutive months in 1998, we directly measured the magnitude of reef fish recruitment to standardized coral units (SCUs) isolated from natural reefs. A total of 40 species from 21 families settled on the SCUs. Of 11 species with sufficient numbers for meaningful statistical analyses, two (Lutjanus guttatus and Pomacanthus zonipectus) had lunar recruitment with peaks near the new moon; three combined species of antennariids showed semilunar recruitment with peaks near moon quarters; and eight other species showed sporadic and aperiodic recruitment pulses. The contribution of lunar (moonlight intensity) and tidal factors (tidal amplitude and net tidal flow) to recruitment dynamics varied among species, although it was generally low (<18%) even among species with periodic patterns, except perhaps in L. guttatus. In this species, recruitment magnitude correlated negatively with moonlight intensity, accounting for 34.5% of the variance. Post-settlement predation by roving predators may be one cause of this relationship. In the remaining species, particularly those with sporadic and aperiodic recruitment pulses, stochastically varying weather and oceanographic events may be more important in determining temporal variation in recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号