首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
《中国环境科学》2016,(“十一”)
采用垂直观测、地面观测、PM_(2.5)化学组分观测和气团轨迹分析等手段,对2015年10月份北京市一次大气重污染过程进行了分析.结果表明,重污染时近地面层气溶胶消光系数升高,污染物主要积聚在600m以下.重污染期间气象要素特征为:风场弱,湿度大,地面受弱气压场控制,边界层高度极低.重污染期间不同站点PM_(2.5)浓度变化趋势和峰值出现时间较为一致;大部分时段PM_(2.5)中NO_3~-浓度明显高于其他组分;周边区域受重污染的影响面积相对较小,高浓度区主要集中在北京市及近周边地区.多手段的观测结果以及PM_(2.5)浓度与气象要素和各化学组分的相关性分析的结果均表明:区域传输,包括秸秆焚烧,对本次北京市重污染天气过程具有一定的影响,但本地机动车排放在不利气象条件下的积累、二次转化以及垂直方向空间的极端压缩是导致重污染的主要原因.  相似文献   

2.
韩笑颜  周颖  吕喆  王晓琦 《环境科学研究》2020,33(10):2235-2245
为探究典型重污染过程的污染特征与大气边界层结构演变规律,基于PM2.5采样数据、气象观测数据及WRF-Chem模式,以北京市和石家庄市2016年12月27日—2017年1月10日一次重污染过程为研究对象,对气象要素、PM2.5化学组分、天气背景场、边界层结构演变特征,以及大气边界层结构变化对ρ(PM2.5)及其主要化学组分的影响进行分析.结果表明:①研究期间,北京市和石家庄市ρ(PM2.5)分别为(165.63±110.89)(247.67±95.22)μg/m3,石家庄市污染程度高于北京市;高空纬向环流和地面弱高压控制的天气背景场,低于1.75 m/s的风速以及超过75%的相对湿度是造成北京市与石家庄市重污染的不利气象条件.②重污染时段北京市与石家庄市SNA(SO42-、NO3-、NH4+三者的统称)与碳质组分(OC、EC)占比之和超过76%,是PM2.5中的两大主要组分;重污染时段ρ(SNA)占比明显上升,北京市与石家庄市ρ(SNA)占比由非重污染时段的42.23%、45.93%分别升至重污染时段的58.87%、59.62%;北京市与石家庄市ρ(OC)/ρ(EC)分别为5.13、3.51,表明在重污染时段两城市存在明显的二次有机气溶胶污染.③WRF-Chem模式模拟结果表明,PM2.5污染严重时北京市与石家庄市在300~500 m处均出现明显的逆温,垂直风场主要表现为低层偏南风顺时针向上切变为偏西风,切变高度在400~1 000 m,逆温层结与明显垂直风切变的边界层特征共同抑制了污染物的湍流与扩散.④北京市与石家庄市重污染时段的PBLH(Planetary Boundary Layer Height,大气边界层高度)日均值与非重污染时段相比分别下降了202、128 m,PBLH每下降100 m,北京市与石家庄市ρ(PM2.5)分别上升18.81、29.85 μg/m3,PBLH下降是导致两城市ρ(PM2.5)快速上升的重要因素.北京市与石家庄市的PBLH与PM2.5组分质量浓度之间的相关性不同,北京市PBLH与ρ(SNA)的相关性高于与碳质组分质量浓度的相关性,石家庄市PBLH与ρ(EC)相关性最高,表明此次重污染过程中北京市PM2.5污染特征以二次形成为主,而石家庄市以一次排放为主.研究显示,北京市与石家庄市此次重污染过程与大气边界层结构变化密切相关.   相似文献   

3.
2014年10月上旬北京市大气重污染分析   总被引:4,自引:0,他引:4  
使用垂直观测、地面观测和PM2.5化学组分观测等手段,对2014年10月上旬北京市一次重污染过程进行分析.结果表明,本次大气重污染发生时北京市近地面后散射激光强度变强,气溶胶消光系数升高,说明污染物在近地面层积累.重污染期间气象要素特征为:风场弱,湿度大,地面受弱气压场控制.从PM2.5浓度变化趋势来看,这次重污染过程大体分为四个阶段:“两个台阶”型的浓度爬升阶段(P1和P2)、高浓度维持阶段(P3)和迅速清除阶段(P4).结合地面观测、遥感反演和PM2.5组分分析可发现,区域传输是导致本次重污染的诱因,其中秸秆焚烧是影响因素之一,随后区域传输和本地污染物排放共同维持并加重了重污染过程.大气氧化剂OX与PM2.5浓度、二次离子浓度均表现出显著正相关性,表明较强的大气氧化性能促进PM2.5浓度增长.  相似文献   

4.
选取河北省唐山市2017年12月27~31日一次典型重污染过程,开展其污染特征及成因分析,对污染期间气象要素、大气颗粒物组分特征进行综合研究.结果表明,此次大气重污染过程中PM2.5平均质量浓度为154μg/m3,重度污染及以上时PM2.5/PM10为0.7;PM2.5中SNA质量浓度占比达58.0%,OC/EC的比值为4.1,说明颗粒物二次反应和有机物在此次污染过程有较大贡献;长期均压场以及近地面高湿、小风、逆温的出现导致唐山地区大气层结稳定,加之周边地区区域传输的贡献,是导致此次大气重污染过程的重要影响因素.  相似文献   

5.
基于车载微脉冲气溶胶激光雷达、多普勒风廓线激光雷达和扭转拉曼廓线激光雷达的中山大学环境气象综合观测车,于2018年12月18日-22日在河北省望都县PM2.5重污染期间开展定点观测.结合地面PM2.5浓度和气象要素观测资料,对本次污染过程的成因展开分析.本次重污染过程日均PM2.5浓度为163.2μg·m-3,PM2.5浓度的日变化特征明显,表现为白天PM2.5浓度降低,傍晚至次日早晨PM2.5浓度升高.气溶胶激光雷达观测结果发现,污染期间,700 m高度以下存在明显的消光系数高值区;夜间存在明显的消光系数高值区分层现象,气溶胶消光系数高值区出现高度可达1700 m.本次PM2.5重污染过程受静稳边界层气象条件和高空气溶胶输送、沉降共同影响.在污染时段内,大气边界层低层小风持续,近地面和大气低层逆温和同温层频发,静稳边界层条件不利于PM2.5的输送和扩散;此外,夜间高空气溶胶伴随强西风带出现...  相似文献   

6.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM2.5浓度均未超过200μg/m3;除夕夜,廊坊站点PM2.5峰值浓度达到504μg/m3,是清洁天气的26倍;年初二~初五,各站点PM2.5始终高于120μg/m3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m3·s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM2.5峰值浓度可达无燃放时PM2.5峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   

7.
牟南南  朱彬  卢文 《环境科学》2022,43(1):85-92
利用观测资料和中尺度天气-化学模式(WRF-Chem)对一次冷锋南下天气过程导致的我国东部大范围空气污染开展研究,强调了冷锋过境前后的边界层结构及其对PM2.5三维结构和变化的影响.观测发现,地面重污染区域位于冷锋前部均压场或等压线稀疏区域,在冷锋由北向南快速移动过程中,途经各站点PM2.5浓度峰值伴随锋前而至.WRF-Chem模式可以较好地模拟中国东部地面和高空气象要素以及PM2.5浓度的时空变化.模拟结果表明,处于该移动冷锋天气系统相同位置的沿途各站点的边界层结构以及PM2.5垂直廓线表现出相似的特征.即:当冷锋开始入侵时,锋前污染物从地面被抬升到高空,PM2.5浓度的增加和高空风速的增大导致高空PM2.5通量增大,且PM2.5浓度高值区随着高度升高向暖气团一侧倾斜.夜间冷锋过境引发边界层内对流性不稳定增加,边界层高度可达1 km以上,打破了边界层昼夜演变特征.本研究表明,垂直观测和精细模拟的结合可以有效地解释天气过程对空气污染的...  相似文献   

8.
汾渭平原是我国空气污染最严重的区域之一,2018年被列为重点区域. 本研究针对汾渭平原11城市开展PM2.5化学组分连续观测,分析PM2.5浓度和主要化学组分的时空分布规律,并利用PMF模型解析PM2.5污染来源. 结果表明:①2018—2019年秋冬季汾渭平原11城市ρ(PM2.5)平均值为(101.4±65.4)μg/m3,是京津冀及周边地区“2+26”城市的1.1倍. 临汾市ρ(PM2.5)最高(216.8 μg/m3),是汾渭平原的2.1倍. ②2018—2019年秋冬季汾渭平原PM2.5的主要化学组分是有机物、硝酸根离子、地壳物质和硫酸根离子,其中地壳物质占比是京津冀及周边地区的1.6倍. ③受污染物排放、气象条件以及地理位置的影响,汾渭平原PM2.5中有机物、硝酸根离子、地壳物质、硫酸根离子、铵根离子和氯离子的空间分布具有明显的差异性. ④随着污染的加重,硝酸根离子、硫酸根离子和氯离子在PM2.5中的占比均逐渐增加,地壳物质、元素碳、微量元素等与一次排放相关的组分占比随污染加重逐渐减少,表明污染期间燃煤源管控仍需进一步加严,而对扬尘源和机动车等污染源的管控起到了良好的效果. ⑤重污染过程期间,相对湿度增加、风速减小是影响PM2.5浓度上升的客观因素,二次组分以及与燃煤源和生物质燃烧源有关的化学组分的增长是影响PM2.5浓度上升的重要原因,二次源和燃烧源是PM2.5的主要来源. 研究显示,汾渭平原秋冬季PM2.5污染较重,尤其需要关注燃烧源的管控.   相似文献   

9.
利用2017~2019年夏、冬季天津市大气污染物监测和气象观测数据,基于天津气象铁塔垂直观测,针对大气垂直扩散条件对PM2.5和O3的影响进行研究.结果显示:近地面PM2.5浓度随高度的升高而下降,O3浓度则随高度的升高而上升,受大气垂直扩散条件的季节和日变化影响,冬季,地面与120m PM2.5质量浓度相关明显,与200m PM2.5质量浓度无明显相关.夏季,120m和200m PM2.5质量浓度相关系数为0.72,午后通常出现120m和200m PM2.5质量浓度高于地面的情况.夏季,不同高度O3浓度差异小于冬季,地面与120m高度O3浓度接近.以大气稳定度、逆温强度和气温递减率作为大气垂直扩散指标,对地面PM2.5和O3垂直分布具有指示作用.冬季,TKE与PM2.5质量浓度相关系数为到-0.65,夏季,TKE与ΔPM2.5相关系数为-0.39.夏、冬季TKE与地面O3浓度的相关系数分别为0.46和0.53,与ΔO3的相关系数分别为0.73和0.70.弱下沉运动对地面O3浓度影响较强,40m高度垂直运动速度与地面O3浓度的相关系数在冬、夏季分别为-0.54和-0.61.对冬季典型PM2.5重污染过程的分析发现,雾霾的生消维持和PM2.5浓度的变化与大气稳定度、气温垂直递减率和TKE的变化有直接关系.对夏季典型O3污染过程的分析发现,近地面的O3污染的形成与有利光化学反应的气象条件密切相关,同时,垂直向下输送和有利垂直扩散条件对O3污染的形成和爆发影响明显.  相似文献   

10.
京南地区PM2.5浓度在北京市各区处于高位水平,对其化学组分特征和二次粒子分析有利于其溯源防治.因此,在2023年1月20日—2月20日对北京南部地区的细颗粒物质量浓度和化学组分进行观测,并分析细颗粒物组分特征与二次气溶胶生成水平.观测期间出现4次污染过程,第一次污染过程主要为春节期间烟花爆竹燃放导致,其他3次污染过程主要以不利气象条件导致的二次转化为主导.观测期间,平均风速为1.41 m·s-1,平均相对湿度为32.47%,水溶性离子日均值总量为29.41μg·m-3,占PM2.5质量浓度的62.20%;OC与EC日均值总量为9.14μg·m-3,占PM2.5质量浓度的20.74%.在污染期,平均风速为1.15 m·s-1,平均相对湿度为52.01%,二次无机盐在PM2.5中的占比为35.40%~86.39%,二次有机气溶胶占比约10%左右.NH4+/(2SO  相似文献   

11.
为揭示重污染过程中多因素的综合作用,选取济南市2018年11月25日-12月4日一次长时间、高强度PM2.5污染和沙尘混合的重污染过程,利用气象资料、空气质量监测结果、激光雷达探测资料及水溶性离子在线数据,开展污染特性以及潜在污染源综合分析.结果表明:①研究期间,首要污染物为颗粒物,ρ(PM10)、ρ(PM2.5)平均值分别为294、141 μg/m3,污染较严重.②根据ρ(PM2.5)/ρ(PM10)将此次重污染过程分为4个阶段,阶段Ⅰ~Ⅳ总水溶性离子浓度分别为(107.3±35.9)(95.2±34.5)(99.0±18.2)(29.3±9.3)μg/m3,分别占ρ(PM2.5)的73.8%、56.9%、64.2%和43.2%.SOR(硫氧转化率)分别为0.47、0.42、0.55、0.25,NOR(氮氧转化率)分别为0.42、0.26、0.28、0.13,表明济南市大气中出现了显著的二次转化过程,SOR均大于NOR表明SO42-转化程度高于NO3-.NO3-/SO42-(质量浓度比)分别为2.97、1.75、1.69、1.45,表明此次污染各阶段中氮和硫的来源以移动源为主.③此次重污染过程济南市ρ(PM2.5)受本地及周边城市传输和两次沙尘过境的综合影响,主要潜在污染源有山东省本地以及江苏省北部、安徽省北部、内蒙古自治区中部和京津冀地区等区域.④近地面均压场、高湿、小风等不利气象因素是导致此次重污染过程的重要因素.研究显示,济南市此次污染过程是不利气象条件、污染物一次积累和二次转化、区域污染传输、沙尘天气等多因素综合作用的结果.   相似文献   

12.
北京冬季一次重污染过程的污染特征及成因分析   总被引:9,自引:0,他引:9  
为了研究北京冬季重污染过程的污染特征及形成原因,选取2013年1月9~15日一次典型重污染过程,对污染期间气象要素、大气颗粒物组分特征和天气背景场进行综合研究.结果表明,此次大气重污染过程中PM10和PM2.5平均质量浓度分别为347.7μg/m3和222.4μg/m3,均超过环境空气质量标准(GB3095-2012)中规定的日均二级浓度限值.重污染时段PM2.5中NH4+、NO3-和SO42-质量浓度之和占PM2.5质量浓度的44.0%,OC/EC的平均比值为5.44,说明二次无机离子和有机物对此次污染过程中PM2.5贡献较大.稳定的大气环流背景场、高湿度低风速的地面气象条件和低而厚的逆温层导致北京地区大气层结稳定,加上北京三面环山的特殊地形结构,是造成此次大气重污染过程的主要原因.  相似文献   

13.
2013~2014年北京大气重污染特征研究   总被引:30,自引:0,他引:30  
从污染物浓度的时间变化、空间分布以及大气污染类型等方面,对2013~2014年北京大气重污染过程进行了分析,并初步探讨其影响因素.结果表明:2013~2014年北京共出现大气重污染105d,重污染频率为14.4%.其中,首要污染物为PM2.5的天数为103d,首要污染物为PM10和O3各有1d;冬半年重污染天数占全年的76.2%.重污染气象要素特征主要表现为风速小、湿度高、能见度低.重污染日PM2.5/PM10浓度比值为91.3%,明显高于全年平均水平,表明重污染时颗粒物以细颗粒物为主.北京大气重污染区域分布表现为南高北低,平原高、山区低的总体特征,交通站重污染天数普遍高于市区其它站点.北京大气重污染主要表现为积累型、光化学型、沙尘型以及复合型等类别;其中积累型大气重污染往往伴有区域污染水平的整体升高,PM2.5组分中NO3-、SO42-、NH4+等水溶性二次离子的浓度增幅最为明显;O3污染在近两年有加重的趋势.  相似文献   

14.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH42SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH42SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响.  相似文献   

15.
为深入探究高ρ(PM2.5)地区重污染过程的发展变化规律,以石家庄市一次重污染过程(2017年1月13-20日)为例,结合空气质量监测数据、PM2.5组分测试数据、气象观测资料,从重污染发展阶段(简称"P1阶段")、维持阶段(简称"P2阶段")和清除阶段(简称"P3阶段")分析PM2.5及其化学组分的变化特征、气象条件和高低空天气形势演变特征,并利用WRF-Chem模型定量研究重污染过程气溶胶反馈效应对典型气象要素的影响.结果表明:①此次重污染过程属于逐步累积增长、快速清除型,在P2阶段ρ(PM2.5)平均值为241.0 μg/m3,最大值为367.5 μg/m3.②P1和P2阶段高低空大气环流配置稳定,大气边界层高度范围为620.6~712.2 m,风速范围为1.3~2.5 m/s,相对湿度范围为60%~80%.③P2阶段SOR(硫氧化率)和NOR(氮氧化率)均为0.3,ρ(SNA)(SNA为SO42-、NO3-和NH4+的统称)为128.8 μg/m3,占ρ(PM2.5)的56.2%;OM[有机质,ρ(OM)=ρ(POA)+ρ(SOA),其中,POA为一次有机气溶胶,SOA为二次有机气溶胶]是除SNA以外的第二大组分,在P1和P3阶段ρ(POA)大于ρ(SOA),而在P2阶段ρ(SOA)与ρ(POA)相等,均为28.0 μg/m3,表明在重污染过程中二次污染严重;整个污染过程ρ(NO3-)/ρ(SO42-)为1.0,表明石家庄市移动源和固定源对ρ(PM2.5)贡献相当.④WRF-Chem模型模拟结果表明,太阳辐射量、温度和大气边界层高度受气溶胶反馈效应的影响在P2阶段的下降量分别为75.1 W/m2、2.7℃和109.9 m,比P1阶段分别高33.6%、91.4%和18.6%,比P3阶段分别高147.0%、305.3%和24.1%.研究显示,此次静稳天气下的重污染过程二次污染严重,气溶胶反馈效应整体使得太阳辐射量、温度和大气边界层高度均向不利于污染扩散的趋势发展,造成石家庄市的ρ(PM2.5)进一步增加.   相似文献   

16.
2018年11月底淄博市经历了一次沙尘影响下的大气重污染过程,为研究此次重污染过程形成机制,分析了淄博市ρ(PM10)和ρ(PM2.5)及PM2.5化学组分特征,并利用PMF模型和后向轨迹模型对颗粒物的来源进行研究.结果表明:①污染期间,ρ(PM10)和ρ(PM2.5)小时平均值分别为(259±111)和(133±51)μg/m3,分别是污染后ρ(PM10)〔(88±38)μg/m3〕和ρ(PM2.5)〔(36±14)μg/m3〕的2.9和3.7倍.②受沙尘的影响,Ca2+、Mg2+、Al、Mg、Ca、Si等代表沙尘源的离子和元素组分的质量浓度在PM2.5中占比均高于污染后.③ 72 h后向轨迹结果表明,除受西北方向沙尘传输气流影响外,局地盘旋的当地气流也增加了污染物的累积,此次大气污染过程是本地污染物累积及西北沙尘传输共同作用形成的.④ PMF模型解析表明,污染期间扬尘源是PM2.5的首要贡献源类,贡献率达33.61%,说明沙尘过境对此次污染过程有较大贡献;污染后工业源贡献显著增高,成为主要污染源,贡献率为22.71%,体现了淄博市是重工业城市的特点.研究显示,淄博市此次重污染过程颗粒物来源复杂,除受本地区域污染影响外,外来沙尘过境贡献也较大.   相似文献   

17.
利用2018-11-21—12-05常熟市空气质量自动监测站点的常规参数逐时数据、细颗粒物化学组分数据及大气颗粒物激光雷达监测结果,对常熟地区秋冬季一次重污染过程中PM2.5及其主要化学组分(水溶性离子)的污染特征进行系统分析。结果表明:11-24—12-03常熟地区出现了一次持续重污染过程,PM2.5浓度高值主要出现于高湿、小风、低边界层的天气条件下,且PM2.5浓度与湿度呈显著正相关,受不利扩散条件下的局地污染累积及高湿状态下颗粒物二次转化影响较大。观测期间,二次离子(NO3-、NH4+、SO42-)在水溶性离子中占比较高,尤其是污染期,占比高达97%,受二次生成影响较大;其中,NO3-在水溶性离子中占比最高。整个分析时段,SOR与NOR均值分别为0.38与0.22,污染期间SOR与NOR均值明显升高,分别达到0.47与0.32;4个阶段内仅有污染期时段的NO3-、SO42-累积增长速率大于CO,此时NO3->SO42-,该阶段主要受到NO2二次转化影响,常熟市重污染期间应着重加强工业源与移动源的管控。  相似文献   

18.
为研究新疆奎独乌(奎屯、独山子、乌苏)区域冬季大气重污染过程的PM2.5污染特征及其成因,于2015年2月4-10日在奎屯、独山子和乌苏三地开展PM2.5样品采集,并对其中的元素、水溶性离子及碳组分进行测试,分析不同污染水平下PM2.5中化学组分的变化规律.结果表明,采样期间奎独乌区域ρ(PM2.5)日均值均超过GB 3095-2012《环境空气质量标准》二级标准(75 μg/m3),2月9日ρ(PM2.5)最高(298.58 μg/m3),超标2.98倍.通过比较PM2.5载带化学组分质量百分比发现,随着污染等级加剧,SO42-、NO3-质量百分比呈逐渐增加的趋势,严重污染时SO42-、NO3-质量百分比分别较轻度污染时增长11.7%、5.5%;NH4+、碳组分及元素组分质量百分比则呈下降趋势,严重污染较轻度污染时分别下降0.7%、9.5%、2.4%;结合采样期间静稳及高湿的气象条件,说明此次重污染由本地污染物累积及二次颗粒物生成所致.随着污染水平的加重,SOR(硫氧化率)及NOR(氮氧化率)的值也在随之增大,说明污染越重大气二次转化程度越高,进一步验证了二次颗粒物是导致此次重污染的原因之一.对不同污染等级PM2.5进行质量重构发现,PM2.5中主要组分均为硫酸盐和OM(有机物),硫酸盐和OM的质量百分比分别在23.0%~34.7%、16.4%~28.7%之间,说明此次重污染过程的主要污染源为燃煤及机动车尾气.   相似文献   

19.
为揭示邯郸市空气污染过程及形成原因,以邯郸市环境监测中心为采样点,对采样滤膜进行离子和碳质组分测试,探讨PM2.5组分浓度变化特征,并利用WRF-CAMx空气质量模型模拟分析2017~2018年秋冬季3次重污染前后邯郸市各个地区各类污染源大气污染排放对PM2.5质量浓度的贡献.结果显示,重污染期间邯郸市水溶性粒子占PM2.5质量浓度的62.4%,二次离子中呈现NO3- > SO42- > NH4+变化趋势.受地面均压场和高压底部控制及500hPa高空纬向环流影响,污染物水平方向和垂直方向传输受到抑制,同时边界层高度的降低进一步加剧PM2.5污染浓度的升高,随着西伯利亚东部高压和欧亚大陆高压南下以及边界层高度的上升,3次重污染过程得以彻底清除.PSAT示踪模块结果表明复兴区,丛台区和永年区是邯郸市PM2.5浓度贡献的主要区县,3个区县重污染贡献总和为66.8%~72.2%,重污染时段冶金,交通源和居民散煤燃烧是3大主要污染源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号