首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
兽药制药粉尘加工工艺过程中,由于粉尘颗粒之间或颗粒与设备、管壁之间的碰撞、摩擦,导致装置内部静电荷量积聚,激发静电放电,粉尘燃烧或爆炸的事故频发。实验主要通过包括粉尘与管材摩擦的漏电电流测试和静电放电火花对粉尘云点燃敏感性测试两部分。结果表明:单一药物药粉的静电漏电电流随着管材管径的增大,管长的增长,静电漏电电流逐渐变大;随着倾斜角的增大,静电漏电电流先增大后降低;镀锌铁管的漏电电流大于PVC管,电荷逸散速度更快。单一兽药粉的粉尘云放电火花最小点燃能量随质量浓度的变化,呈现二次曲线的变化趋势。混合兽药粉与单一兽药粉的漏电电流和粉尘云放电火花最小点燃能量的测试结果的变化趋势是一致的。  相似文献   

2.
典型静电放电火花点燃危险性评价方法研究   总被引:5,自引:2,他引:5  
通过研究典型静电放电火花的实际点燃能力 ,对实际生产工艺工程中的静电放电火花的点燃危险性进行定量评价。静电放电火花的放电相当能量、放电火花空间分布范围和放电火花持续时间 ,决定了静电放电火花实际点燃可燃物的可能性大小 ,因此不同类型的静电放电火花点燃可燃物的差异性很大。根据数据序列理论分析 ,引入静电放电火花点火源序列和可燃物危险性序列之间存在的关联性 ,反映了静电放电火花点燃可燃物的危险程度 ,可用于对静电放电火花的实际点燃危险性进行量化评价。对聚烯烃粉体生产工艺过程中典型和频发性的静电放电火花的点燃危险性进行了定量评价。  相似文献   

3.
石油化工企业存在有可燃气体(蒸汽)爆炸性混合物的危险场所,有些危险物质易产生和积聚静电荷,当静电电位达到一定的程度,并具备放电条件,且产生的放电火花能量大于该危险物质的最小点燃能量时,即可引发爆炸和着火事故。笔者就石油化工企业静电引燃爆炸危险情况进行了论述,并提出消除静电危害的防范措施。  相似文献   

4.
针对某不饱和聚酯树脂钮扣厂在除尘设备维修过程中发生的粉尘爆炸事故,探究静电引起此次事故的可能性并提出防护措施。通过实验测定不饱和聚酯树脂钮扣粉尘的爆炸特性参数,进而确定其静电爆炸敏感性。结果发现:不饱和聚酯树脂钮扣粉尘云最小点火能MIE为4~10 mJ、最低着火温度MIT为480 ℃、粉尘层最低着火温度LIT>400 ℃。表明,此粉尘属易燃粉尘,其粉尘爆炸敏感度极高,被静电火花点燃的可能性极大,在生产过程中,应采取静电防护措施。  相似文献   

5.
为研究三七粉着火燃烧的参数,用粉尘云引燃温度装置和粉尘层引燃温度装置,对三七粉的最小引燃温度(MIT)进行实验研究。分别研究喷吹压力、质量浓度、粉尘层厚度对MIT的影响。结果表明:三七粉尘云的质量在0.2 g时最小引燃温度随着喷尘压力的增加先减小再增大,在0.3 g到0.6 g时最小引燃温度随着喷尘压力的增加而增大;在压力20 kPa、30 kPa时随着质量浓度的增大,粉尘云引燃温度先减小后增大,在40 kPa到60 kPa时,随着质量浓度的增大,粉尘云引燃温度增大;粉尘云最小引燃温度高于粉尘层最小引燃温度;三七粉尘云的最小引燃温度399℃,粉尘层最小引燃温度240℃。  相似文献   

6.
在烟草加工的加香工序,挥发的酒精和搅拌混料产生的烟草粉尘形成气粉混合体系,其燃爆特性相较于单相烟草粉尘有较大变化。对20 L爆炸球进行了部分改造,可完成20℃~80℃环境温度、100%LEL以下酒精蒸气浓度、最大2 J电火花能量组合的气粉混合物的最小点火能测试。选用烘丝和加香烟草粉尘做对比,探究了环境温度和酒精蒸气浓度对酒精蒸气/烟草粉尘两相混合体系点火能的影响规律。结果表明:相同环境温度下,加香烟草粉尘的最小点火能比烘丝烟草粉尘低;加香粉尘、烘丝粉尘及混合体系的最小点火能随环境温度变化的趋势一致,均随温度的升高而降低;加入10%LEL的酒精蒸气后,相同温度下气粉混合体系的最小点火能低于单相烟草粉尘。随着环境温度的升高,二者的差值逐渐减小,酒精蒸气诱导烟草粉尘最小点火能降低的能力逐步减小甚至消失;在电点火条件下,当酒精蒸气浓度低于50%LEL时,气粉混合体系较难被点燃,当酒精蒸气浓度高于75%LEL时,混合体系较易被点燃。  相似文献   

7.
为了分析瓶级聚酯切片(PET)生产过程中分析筛处理量对其静电带电特性的影响,基于颗粒振动摩擦带电模拟试验,研究单颗粒PET振动摩擦带电饱和量以及多颗粒PET振动带电荷质比数据。结果表明:瓶级PET产品静电半衰期超过80 ks;PET单颗粒与金属分析筛碰撞摩擦时带电量随振动时间增加趋于饱和,且单粒子荷质比大小可超过16 nC·g-1;随着分析筛内PET总质量增加,PET颗粒间碰撞几率增加,但PET的荷质比值迅速降低。利用工业振动筛处理PET时,应尽量提高总颗粒处理量以控制颗粒带电,抑制静电对粉尘吸附作用,有利于脱除切片中携带的粉尘。  相似文献   

8.
为研究玉米淀粉粉尘爆炸危险性,采用哈特曼管式爆炸测试装置和20 L球爆炸测试装置对200目(<75μm)以下的玉米淀粉粉尘爆炸危险性进行评估,基于静电火花和粉尘质量浓度对粉尘爆炸的影响,对玉米淀粉的静电火花最小点火能量、爆炸下限质量浓度、最大爆炸压力和爆炸指数进行了研究,根据试验结果对玉米淀粉爆炸危险性进行分级。试验结果表明:温度在25℃,喷粉压力为0.80 MPa,粉尘质量浓度在250~750 g/m3范围内,粉尘的最小点火能量随着粉尘质量浓度增加而降低,其最小点火能量在40~80 mJ之间;在点火能量为10 kJ时,粉尘爆炸下限质量浓度在50~60 g/m3之间;在粉尘质量浓度为750 g/m3时,爆炸压力达到最大,为0.66 MPa;在粉尘质量浓度为500 g/m3时,爆炸指数达到最大,为17.21 MPa.m/s,其粉尘爆炸危险性分级为Ⅰ级。  相似文献   

9.
通过开展硅质量分数25%高硅铝合金粉尘燃爆特性研究,揭示了硅质量分数25%高硅铝合金粉尘的最小点火能、最低着火温度、爆炸下限和最大爆炸压力。研究结果表明,在实际生产中要防止高硅铝合金粉尘云与雷电、静电、生产中摩擦或碰撞所产生的火花等能量源接触,避免达到高硅铝合金粉尘云的最小点火能0.1~0.2 mJ而引发爆炸事故;要防止出现明火与发热设备热表面温度达到高硅铝合金粉尘云最低着火温度960℃;对高硅铝合金生产场所、工艺设备等进行抗爆设计时,约束爆炸压力措施承受最大爆炸压力的冲击至少要在0.525 MPa或以上。  相似文献   

10.
敏感条件对粉尘云最小点火能的影响规律分析   总被引:1,自引:1,他引:0  
为使粉尘云最小点火能实验测量更准确,从多个方面分析影响最小点火能的测量因素,并根据粉尘云状态、粉尘颗粒固有性质、点火电路等几个方面对影响粉尘云最小点火能的因素,即敏感条件进行了分类。在实验测量中,具体归纳为:粉尘浓度、粉尘湿度、粉尘粒度及其分布、粉尘挥发份含量、粉尘温度(环境温度)、粉尘云的湍流度、粉尘分散质量、粉尘云初始压力、环境氧浓度、电极材料、电极直径和电极末端曲率、电极间距、电火花持续时间、点火延迟时间、电火花能量密度、火花触发电路、可燃气体影响、实验次数等18个影响因素。重点分析了敏感条件对最小点火能的影响规律,从粉尘云点火机理和过程出发,着重分析一些敏感条件对最小点火能影响的内在原因和实质。  相似文献   

11.
Current standard test methods for electric-spark minimum ignition energies (MIEs) of dust clouds in air require that a series inductance of at least 1–2 mH be included in the electric-spark discharge circuit. The reason is to prolong the spark discharge duration and thus minimize the spark energy required for ignition. However, when assessing the minimum electrostatic energy ½CU2 for dust cloud ignition by accidental electrostatic-spark discharges, current testing standards require that the series inductance of at least 1–2 mH be removed from the spark discharge circuit. No other changes of apparatus and test procedure are required. The present paper questions whether this simple approach is always adequate. The reason is that in practice in industry accidental electrostatic-spark discharge circuits may contain large ohmic resistances due to corrosion, poor electrical grounding connections, poorly electrically conducting construction materials etc. The result is increased spark discharge durations and reduced mechanical disturbance of the dust cloud by the blast wave emitted by the spark. Therefore, testing for minimum ½CU2 for ignition by accidental electrostatic spark discharges may not only require removal of the series inductance of 1–2 mH from the standard MIE spark discharge circuit. Additional tests may be needed with one or more quite large series resistances Rs inserted into the spark discharge circuit. The present paper proposes a modified standard test procedure for measurement of the minimum electrostatic-spark ignition energy of dust clouds that accounts for these effects.  相似文献   

12.
Electrostatic Powder coating which is a surface finishing technique has widely been used in paint industry since its invention in the 1960s. However, so far, insufficient attention has been paid to the powder fires and/or explosion hazards caused by electrostatic spark during coating process. This paper is a report of the electrostatic spark ignitability of aluminous coating powders (dry blend-type) used in practical electrostatic powder coating. The Hartman vertical-tube apparatus was used for the minimum ignition energy (MIE) test. Various aluminous coating powders, different with respect to the amount of aluminum pigment, were used in this study. Experimental results obtained in this study are as follows: (1) The aluminous coating powder was so sensitive that even an electrostatic spark with an energy as low as 10 mJ could ignite it. (2) The particle size of aluminous coating powder has a considerable effect on the ignitability when the aluminum pigment concentration is within 6 wt% of the practical coating powder manufacturing standards. Thus, the conventional expression for estimating the MIE can be useful when assessing the electrostatic hazards associated with aluminum coating powders.  相似文献   

13.
Nearly 130 years ago Holtzwart and von Meyer (1891) demonstrated by experiments that explosible dust clouds could be ignited by inductive electric sparks. Then more than half a century passed before the publication of the important quantitative research of Boyle and Llewellyn (1950) and Line et al. (1959). They worked with capacitive electric sparks and found that the minimum capacitor energies ½CU2 required for ignition of various dust clouds in air decreased substantially when a large series resistance, in the range 104–107 Ω, was introduced in the discharge circuit. When considering that the net energies of the sparks themselves were only of the order of 10% of the ½CU2 discharged, the minimum net spark energies required for ignition with a large series resistance were only a few per cent of the net energies required without such a resistance.Line et al. observed that the essential effect of increasing the series resistance, and hence increasing the discharge time of the sparks, was to reduce the disturbance of the dust cloud by the blast wave from the spark. This phenomenon was explored further by Eckhoff (1970, 2017), and subsequently by some simple experiments by Eckhoff and Enstad (1976). Franke (1974, 1977) and Laar (1980) confirmed the additional finding of Line et al. (1959) that the minimum ½CU2 for ignition is also substantially reduced by including a series inductance in the discharge circuit, rather than a series resistance. The basic reason is the same as with a large series resistance, viz. increased spark discharge time and hence decreased disturbance of the dust cloud by blast wave from the spark. For this reason inclusion of an appreciable series inductance in the spark discharge circuit is an essential element in current standard MIE test methods.In experiments with spark ignition of transient dust clouds produced by a blast of air in a closed vessel, it is necessary to synchronize the occurrence of the spark with the formation of the dust cloud. The precision required from this type of synchronization is typically of the order of 10 ms, which can be obtained even by mechanical arrangements, such as rapid change of spark gap length, or of the distance between two capacitor plates. The present paper reviews some methods that have been/are being used for achieving adequate synchronization of dust cloud appearance and spark discharge. Some current standard experimental methods for determining MIEs of dust clouds experimentally have also been reviewed. The same applies to some theories of electric-spark ignition of dust clouds.At the end of paper some suggestions for possible future modifications of current standard methods for measuring MIEs of explosible dust clouds are presented. With regard to justifying significant modifications of existing standard methods, the “bottom line” is, as quite often in many connections, that any modifications should be based on realistic cost/benefit evaluations.  相似文献   

14.
An investigation of ignition of dust clouds by the use of electric spark discharges triggered by the explosive dust cloud itself has been conducted. This method of triggering capacitive sparks probably represents a realistic mechanism for initiating accidental dust explosions in industrial practice. Unlike the conventional method for determining the minimum ignition energy (MIE) in the laboratory, the delay between dust dispersion and spark discharge is not a degree of freedom. In stead, the transient dust cloud itself is used to initiate spark breakdown between electrodes set at a high voltage lower than breakdown in pure air. In the present study, different kinds of dusts were tested as ‘spark triggers’, and they exhibited quite different abilities to trigger breakdown. Large particles were found to initiate breakdown at lower voltages than smaller ones. In general, conductive particles were not found to initiate breakdown at lower voltages than dielectric ones when using the same dust concentration.Minimum ignition energies (MIE) of three dusts (Lycopodium clavatum, sulphur and maize starch) were determined using the authors' method of study. The MIEs were somewhat higher than those obtained using conventional methods, but relatively close to the values obtained through conventional methods.  相似文献   

15.
为实现风送管道物料静电监测与控制,预防料仓静电燃爆事故,提高聚烯烃装置料仓安全水平,基于非平衡式双极性离子风消电技术,开发了双极性离子风消电器;基于离子风消电器和静电监测器,探讨了石化粉体料仓用离子风消电控制系统组成、电路、气路布局;对非平衡式双极性离子风消电系统进行现场应用测试。结果表明:基于此管道粉体消静电技术,合理调节正、负侧控制电压,可有效控制管道物料荷质比稳定在±0.3 μC/kg以内,保障聚烯烃装置料仓安全、稳定运行。  相似文献   

16.
为研究可靠点燃主装药,性能稳定的B/KNO3点火药,对不同配比的B/KNO3进行配制并对其性能进行测试。不同配比B/KNO3在火焰感度、静电火花感度、撞击感度、摩擦感度4项外界刺激中,除了对撞击非常钝感之外,对其他3项外界刺激敏感。在不同比例的药中,以B/KNO3比例为50:50,粘结剂为X的药火焰感度最高,稳定性好;静电火花感度随B/KNO3中B比例提高而降低,摩擦感度随B/KNO3中B比例提高而提高,但当中B比例从40%提高到50%时,这两感度改变不多。分析得出B/KNO3比例为50:50,粘结剂为X的药满足对主装药点火可靠,稳定性好。  相似文献   

17.
6氨基青霉烷酸(6-APA)是生产阿莫西林的重要中间体,在生产过程的离心机分离及干燥等环节存在粉体燃烧爆炸的危险。利用Hartmann管式粉尘最小点火能测试装置,研究6-APA干粉状态及丙酮存在环境粉体最小点火能变化规律。实验结果表明,6-APA粉体在分散质量为0.6g时,最小点火能为14mJ,参照VDI2263的规定,属于一般着火敏感性粉尘。向粉体中加入丙酮溶剂模拟实际生产环境,实验结果显示粉尘云最小点火能下降明显,且混合物着火能力增强。质量为1g的6-APA粉体与0.5mL丙酮溶剂配比条件下,混合物分散质量为0.6g时,最小点火能为6mJ,在此环境中混合粉体属于特别着火敏感性粉尘。实验结果阐明了6-APA在丙酮存在环境条件下混合粉体燃烧的爆炸危险性,为采取相应的爆炸防护措施提供了实验依据。  相似文献   

18.
Quantifying the risk of accidental ignition of flammable mixtures is extremely important in industry and aviation safety. The concept of a minimum ignition energy (MIE), obtained using a capacitive spark discharge ignition source, has traditionally formed the basis for determining the hazard posed by fuels. While extensive tabulations of historical MIE data exist, there has been little work done on ignition of realistic industrial and aviation fuels, such as gasoline or kerosene. In the current work, spark ignition tests are performed in a gaseous kerosene–air mixture with a liquid fuel temperature of 60 °C and a fixed spark gap of 3.3 mm. The required ignition energy was examined, and a range of spark energies over which there is a probability of ignition is identified and compared with previous test results in Jet A (aviation kerosene). The kerosene results are also compared with ignition test results obtained in previous work for traditional hydrogen-based surrogate mixtures used in safety testing as well as two hexane–air mixtures. Additionally, the statistical nature of spark ignition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号