首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用CanMETOP模型,模拟了2005年欧洲(去除前苏联所占区域)、印度、中国和前苏联4个主要的g-HCH土壤残留区域的g-HCH通过挥发、大气传输和沉积对中国环境的影响.结果表明,中国东部和西部地区近地面的年均浓度分别为10~100pg/m3和1~10pg/m3.中国本地源对东中部和东北部的浓度贡献在90%以上,对东南部地区的贡献为30%~80%,印度源对该地区的贡献为10%~30%;印度源对西部的近地面浓度贡献在50%以上;欧洲源和前苏联源主要影响西北地区,贡献比例均在10%左右.中国本地源对东北区域的总沉积贡献最大(75%),西北区域和南部区域的总沉积均以印度源贡献为主,贡献比例分别为63%和67%.整个中国,年总沉积量为691t,贡献比例依次为印度源(55.1%),中国源(31.6%),欧洲源(3.6%),前苏联源(2.5%).  相似文献   

2.
臭氧污染动态源贡献分析方法及应用初探   总被引:2,自引:1,他引:1  
论文创新提出了基于RSM/CMAQ臭氧污染动态源贡献分析方法,并以佛山市顺德区2014年10月为例,分析了不同区域的人为可控源NO_x和VOCs减排情景下(10%、70%和100%)对本地O_3浓度变化的量化贡献.研究结果表明顺德区O_3的人为可控比例约43%,且受区域排放影响非常明显,主导上风向广州排放源总贡献(14%)超过顺德本地贡献(7%).VOCs的减排可有效削减顺德区O_3浓度,当减排力度较小时(12%),若仅控制区域NO_x排放将导致顺德区O_3浓度上升,随着减排力度的加大,区域NO_x的削减贡献会反超VOCs.RSM/CMAQ动态源贡献分析方法可为空气质量管理提供科学决策依据.  相似文献   

3.
应用耦合黑碳源示踪方法的区域大气化学WRF-Chem模式,对中国东部秋季黑碳气溶胶(BC)分布特征进行研究.研究发现中国中东部BC浓度较高(>2μg/m3), BC高值区(>4μg/m3)分布在华北平原、长江三角洲、两湖及四川东部等地区.工业源、居民生活源、交通源是BC的主要排放源,其中工业源会造成近地层BC分布呈点状高值,地形及气象条件也是影响BC累积和传输的重要因素.BC浓度较高的京津冀BC以本地源贡献为主,在不同的风场及大气扩散条件下,外来源对京津冀BC贡献占比的变化较大.BC来源可分为两种情形:一是传输型:地面风速较大,外来源贡献占比达35.1%;二是静稳型:地面风速小,大气条件静稳,以本地贡献(80.1%)为主,来自京津冀周边省份(山东、河南、山西和陕西)的贡献较少(6.9%).本地源与外来源对京津冀BC贡献比呈相反的日变化特征,其中傍晚~早上,本地贡献占比维持在较高水平;午后本地贡献占比减小,外来输送明显增强.当京津冀地区受外来输送影响更大时,日变化特征更明显,外来贡献在午后占比可超过40%.  相似文献   

4.
为了解北京市夏季臭氧(O3)污染的特征与来源,采用区域空气质量模型(CMAQ)的综合源解析功能(ISAM)对北京市2019年6月不同区域的近地面O3浓度及其来源贡献进行了数值模拟计算,量化了北京市、天津市、河北省、京津冀以外省份以及全球背景共14类NOx和VOCs排放源对北京市不同区域O3污染的贡献. 结果表明:①北京市不同地区O3及其前体物来源存在显著差异,城区及近郊区NOx和VOCs均主要来自于北京市本地排放,本地源排放对城区及近郊区的NOx贡献(39.7%~46.4%)显著大于对远郊区的贡献(19.9%~38.8%),本地源排放对城区及近郊区的VOCs贡献(51.1%~75.8%)大于对远郊区的贡献(19.5%~39.6%). ②远郊区NOx和VOCs浓度更易受非本地排放的输送影响. ③O3主要来源于包括模拟区域外以及全球背景的边界传输贡献,边界传输对北京市不同受体区域的贡献均大于52.6%. ④北京市本地源排放对城区及近郊区O3的贡献(6.8%~18.3%)大于对远郊区的贡献(2.4%~7.6%),京津冀以外源区的排放对北京市远郊区的贡献(5.2%~6.4%)大于对城区及近郊区的贡献(2.7%~4.4%),说明本地排放对远郊区影响相对较小,远郊区O3浓度易受北部燕山山脉和太行山的阻隔影响. 因地理位置及地形原因,河北省不同源区对北京市不同区域O3浓度的贡献存在一定差异. 研究显示,控制北京市夏季O3污染应综合考虑城区与郊区O3来源的差异性,做好周边区域的联防联控.   相似文献   

5.
城市化、工业化、机动化的高速推进以及大气活性物质的大量排放,使得长江三角洲地区在夏秋季节面临严峻的以高浓度O3为典型特征的光化学污染问题.然而,O3与其前体物之间的高度非线性反应过程使得其来源识别变得十分复杂,因此针对高浓度O3的控制途径仍不清楚.本文以2013年7月长三角地区发生的一次持续时间长、波及范围广、强度高的高浓度O3污染过程为研究案例,基于CAMx空气质量数值模型中耦合的臭氧来源追踪方法(OSAT),采用物种示踪的方法对长三角3个代表性城市上海、苏州、杭州近地面O3的污染来源开展了模拟研究,探讨了4个源区(上海、浙北、苏南和长距离输送)、7类排放源(工业锅炉和窑炉、生产工艺过程、电厂、生活源、流动源、挥发源和天然源)对上海、苏州和杭州城区地面O3的浓度贡献.研究结果表明:长距离输送以及区域背景产生的O3约在20×10-9~40×10-9(体积分数)之间;加上上海及苏南、浙北地区排放的前体物在长三角城区地区二次生成O3,可使O3上升至40×10-9~100×10-9(体积分数)乃至更高.模拟时段内日间8 h O3浓度的地区贡献分析结果显示,长距离传输对于上海、苏州、杭州的浓度贡献分别为42.79%±10.17%、48.57%±9.97%和60.13%±7.11%;上海城区O3来源中,上海本地污染贡献平均为28.94%±8.49%,浙北地区贡献约19.83%±10.55%;苏州城区O3来源中,苏南地区贡献约26.41%±6.80%;杭州城区O3来源中,浙北地区贡献约29.56%±8.33%.从各受点日最大O3小时浓度贡献来看,长距离传输贡献比例显著下降(35.35%~58.04%),而本地污染贡献上升.区域各类污染源贡献分析结果表明,长三角地区对O3污染贡献最为突出的几类污染源分别是工业锅炉和窑炉(浓度贡献约18.4%~21.11%)、生产工艺过程(19.85%~28.46%)、流动源(21.30%~23.51%)、天然源(13.01%~17.07%)和电厂排放(7.08%~9.75%).研究结果表明,工业燃烧排放、生产工艺过程中产生的VOC排放以及流动源大气污染物排放,是造成长三角区域夏季高浓度O3的主要人为源.  相似文献   

6.
基于曲面响应建模的PM2.5可控人为源贡献解析   总被引:1,自引:0,他引:1  
以东莞市PM_(2.5)重污染月份为例,使用强力法(Brute Force)和RSM/CMAQ曲面响应模型法分别解析了珠三角地区人为源排放对东莞PM_(2.5)的贡献,以及区域传输的可控人为源SO_2、NO_x和一次颗粒物(PM)在不同控制比例下(25%、50%、75%和100%)对东莞PM_(2.5)的累积浓度贡献.强力法研究结果表明,2014年1月珠三角地区人为源二次转化对东莞市PM_(2.5)的贡献(约58.10%)大于一次PM排放贡献(约41.90%),其中,人为源NH_3排放贡献最大,约占总量的21.66%.RSM/CMAQ动态源贡献结果显示,东莞市PM_(2.5)的人为可控源排放贡献(SO_2、NO_x和一次PM)占比为82.17%,受本地排放影响较大,且叠加区域排放的影响;一次PM减排对PM_(2.5)环境浓度的贡献高于仅减排SO_2和NO_x.在减排比例较低时,一次PM减排可有效削减东莞市PM_(2.5)浓度;随控制比例加大,二次前体物(SO_2和NO_x)减排对东莞市PM_(2.5)浓度削减率的影响加大.进一步使用HYSPLIT模式和轨迹聚类分析方法研究了2014年1月东莞市PM_(2.5)污染传输过程.结果显示,该时段共有6条长、短距离污染传输路径,污染物主要来自东莞市东、东北及东南方向,途经其上风向区域(惠州、深圳和广州等)传输至东莞;惠州是各主导上风向出现频率最高的城市,因而其区域传输对东莞PM_(2.5)的贡献也较大,深圳次之.  相似文献   

7.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征.  相似文献   

8.
文章研究基于PM_(2.5)样品采集和水溶性离子测定,运用潜在源贡献分析法和WRF-CAMx模式识别分析了北京市和唐山市2017年1月PM_(2.5)的潜在源区和工业源传输矩阵,通过计算单位排放贡献,分析了京津冀典型工业源PM_(2.5)中一次颗粒物、硫酸盐和硝酸盐的区域贡献和分源贡献规律。结果表明,2017年1月北京和唐山PM_(2.5)浓度均高于国家二级标准,SNA占PM_(2.5)的32.85%~53.68%,且在污染时段,SNA及其前体物浓度均有明显提升;两地冬季潜在源主要受来自西北部内蒙古方向的远距离传输以及东南部渤海湾方向的中短距离传输这两部分污染源区的潜在影响,唐山受本地污染影响更大;从传输矩阵来看,北京和唐山的PM_(2.5)工业源外来贡献分别占总浓度的63.87%和8.66%,其中对北京PM_(2.5)浓度贡献较高的区域为唐山和京津冀中部地区,分别贡献了24.78%和21.18%,在污染日时段,受唐山和南部地区的PM_(2.5)传输贡献分别提升了5.27%和3.46%,受西北地区的影响减少了4.34%。对唐山贡献较高的区域为中部地区和东北部地区,为5.07%和2.10%,在污染日时段,外来传输贡献并没有显著波动(低于1%)。二次组分中,硝酸根的传输性最为显著;两地工业外来源单位排放贡献除却其各自周边地区较大以外,其西北传输通道沿线城市(张家口→北京→唐山)的单位排放贡献亦十分显著,且在这一通道上的外来输送,其第2层(非地面排放源)的单位排放贡献明显大于其他地区;从具体工业源来看,对北京市单位排放贡献最大的行业为其他工业源,对唐山则是冶金源。  相似文献   

9.
天津市PM2.5污染特征与来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
李源  陈魁  孔君  毕温凯  白宇  徐虹  杨宁 《环境工程》2019,37(11):132-137
使用2013—2018年大范围长期连续PM_(2.5)观测数据分析了天津市PM_(2.5)污染特征,并使用SMOKE/WRF/NAQPMS模型研究了天津市不同季节PM_(2.5)来源情况。天津市近年PM_(2.5)浓度逐年下降,2013—2018年的年均浓度从96μg/m3下降到52μg/m3,均呈现冬季浓度最高,春、秋季较高,夏季最低的趋势;空间分布上呈西高东低、南高北低的分布特征。本地排放是天津市PM_(2.5)主要来源,不同季节占比为30%~40%,周边城市的跨省输送特征明显,沧州市的贡献约为10%,廊坊市的贡献在、秋冬季较大,为10%~14%,山东省在冬季以外的季节也有10%左右的PM_(2.5)贡献,国外及海洋的贡献在夏季较大(23%),但在其他季节的贡献较小。多数时期二次生成的PM_(2.5)贡献比例最大,贡献为30%~40%,说明天津所在的华北地区二次反应较强烈。另外,居民源与工业源的排放占比也较大,特别是冬季的居民源,占比高达42%。制定防治措施时可考虑不同季节的地区联防联控,但由于本地的排放占比均较大,在任何季节都应该强化本地排放的控制,控制重点是居民源与工业源。  相似文献   

10.
采用天气学分析和GRAPES-CUACE气溶胶伴随模式相结合的方式,探讨了北京市2016年2月29日~3月6日一次PM2.5重污染过程的大气环流特征、污染形成和消散原因,并利用伴随模式追踪了造成此次重污染过程的关键排放源区及敏感排放时段.结果表明:此次重污染过程北京市PM2.5浓度存在明显日变化,在3月4日20:00达到污染峰值,观测数据显示海淀站PM2.5浓度达到506.4μg/m3.形成此次重污染过程的主要天气学原因是北京站地面处于低压中心,且无冷空气影响,风速较弱,逆温较强,大气层结稳定,混合层高度较低,500hPa西风急流较弱,污染物水平和垂直扩散条件差,大气污染物易堆积;此次过程中,500hPa短波槽过境、边界层偏南风急流和冷空气不完全渗透导致了本次严重污染PM2.5浓度的短暂下降.伴随模式模拟结果表明,此次污染过程目标时刻的污染浓度受到来自河北东北部和南部、天津、山西东部、以及山东西北部污染物的共同影响,目标时刻PM2.5峰值浓度对北京本地源响应最为迅速,山西响应速度最慢;北京、天津、河北及山西排放源对目标时刻前72h内的累积贡献比例分别为31.1%、11.7%、52.6%和4.7%.北京本地排放源占总累积贡献的1/3左右,河北排放源累积贡献占一半以上,天津和山西分别占1/10和1/20,河北源贡献占主导地位,天津和山西贡献较小;目标时刻前3h内,北京本地源贡献占主导地位,贡献比例为49.3%,目标时刻前4~50h内,河北源贡献占主导地位,贡献比例为48.6%,目标时刻前50~80h,山西源贡献占主导地位,贡献比例在50%以上.  相似文献   

11.
北京夏季近地面臭氧及其来源的数值模拟研究   总被引:4,自引:0,他引:4  
高浓度的近地面臭氧一直是北京夏季面临的主要污染问题,本文利用自主发展的空气质量数值模式WRF-NAQPMS(Weather Research and Forecasting Model-Nested Air Quality Prediction Modelling System)以及生物源排放模式MEGAN(Model of Emission of Gases and Aerosols from Nature),数值模拟了2017年6月华北区域臭氧的时空分布,评估了生物源排放可挥发有机物对臭氧的影响,并对北京臭氧的关键源区和形成时间进行量化解析.结果发现:NAQPMS (Nested Air Quality Prediction Modelling System)模式合理再现了北京及其周边臭氧的时空演变规律,特别是生物源的加入有效改善臭氧浓度的模拟效果.生物源对北京6月臭氧浓度月均值的贡献为4%~6%,对最大1小时浓度的贡献最高可达8%以上.源解析结果发现,本地当天排放的臭氧前体物对北京城区浓度影响最大,对最大1小时浓度和8小时移动平均浓度的贡献达到50.2%和45.4%,远高于1~2天前排放污染物的影响.河北对北京的影响主要集中在当天和1天前排放的污染物,对最大1小时浓度的贡献分别为7.9%和6.5%.河南和山东对北京城区最大1小时浓度的贡献较小,分别为2.4%和3.7%,且主要为1~2天前排放的污染物在区域输送过程中的化学反应所贡献.对于北京区域平均来讲,本地的贡献率较城区明显偏小,河北的贡献显著增加,这也说明北京市臭氧来源的空间不均匀性较大.北京地区生成的臭氧沿怀柔区向北输送,到达承德市西侧,对月均值的贡献达到20~30μg·m~(-3).  相似文献   

12.
珠三角冬季PM2.5重污染区域输送特征数值模拟研究   总被引:4,自引:2,他引:2  
利用嵌套网格空气质量模式系统(NAQPMS)及其耦合的污染来源追踪模块,针对2013年1月珠三角区域的PM_(2.5)重污染过程输送特征进行了数值模拟研究.结果表明,污染气团首先形成于广州、佛山地区,并在弱偏北风的作用下南移加强,影响整个珠三角区域.重污染期间,广州(64.9%)、佛山(58.9%)的PM_(2.5)主要来自本地贡献,是区域输送最主要的来源地区;中山(51.9%)、珠海(66.2%)的PM_(2.5)主要来自外来贡献,是区域输送主要的受体地区.重污染期间,广州和佛山对中山的PM_(2.5)日均贡献率之和总体保持在25%以上,污染最重时达到40%.交通(26%)、工业(24%)、扬尘(16%)、火力发电(15%)和生物质燃烧(8%)是对中山贡献最大的5类源:工业源中山本地与外来输送贡献率基本相当;交通和扬尘源以中山本地贡献为主,贡献率分别为55%和67%;火力发电和生物质燃烧源以外来输送为主,贡献率分别为56%和62%.各类排放源的外来输送中,以广州、佛山所占的比例最大.  相似文献   

13.
张馨心  赵秀颖  黄凌  薛金  卞锦婷  王杨君  李莉 《环境科学》2023,44(12):6576-6585
基于WRF-CMAQ模型中的ISAM模块对2021年6月淄博市夏季O3及其前体物NO2和VOCs进行来源解析,明确O3及其前体物的来源(区域和源类),并将O3日最大8 h平均值(MDA8)高于(低于)160μg·m-3的时段划分为污染(清洁)时段,对比了清洁天与污染天的来源差别并选取了典型污染时段进行来源解析和过程分析.结果表明,淄博市夏季NO2主要来自本地排放,贡献率达45.1%,道路移动源(33.8%)和天然源(20.7%)是最主要的本地NO2来源.天然源、溶剂源和石化行业对VOCs的贡献占据主导地位,总贡献达78.5%.MDA8的本地贡献是21.4%,区域外传输(32%)和周边城市(26.8%)影响不可忽略.在本地排放源中,道路移动源、电力行业和建材行业对本地MDA8贡献率在10.9%~18.8%.O3污染天时淄博市MDA8受本地贡献及区域内各城市贡献总和均有所上升.但从淄博市本地源类贡献的变化来看,在不同...  相似文献   

14.
邵科  尹文华  朱国华  巩宏平  周欣  王玲  刘劲松 《环境科学》2013,34(11):4434-4439
采集了电子垃圾拆解地周边125个点位的151个土壤样品,分析了土壤中4~8氯代二噁英和二噁英类多氯联苯的浓度.表层土壤样品中总二噁英的浓度范围为280~7 010 pg·g-1,平均浓度为1 380 pg·g-1.中层和深层土壤样品中总二噁英的平均浓度分别为表土的63%和38%.表土样品中二噁英毒性当量浓度(以I-TEQ计)范围为1.4~94.8 pg·g-1.根据德国关于毒性当量浓度的指导方针,125个土壤样品中只有19个(15%)可以被认为对人体健康无害,其余85%的土壤需要调查二噁英的来源.如果考虑多氯联苯对毒性当量的贡献,则有98%的土壤需要调查二噁英的来源.主因子分析被用来调查这一地区二噁英的排放源.通过对土壤中二噁英的同系物分布进行分析,发现拆解活动是这一地区热过程二噁英的主要排放源,也是这一地区土壤中二噁英的主要来源.  相似文献   

15.
APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析   总被引:1,自引:0,他引:1  
为分析2014年APE(Asia-Pacific Economic Cooperation)会议前后北京郊区大气颗粒物数浓度和质量浓度的变化特征及其主要影响因素,于当年11月在北京怀柔区中国科学院大学雁栖湖校区教学一楼楼顶利用微量振荡天平(TEOM)、扫描电迁移率颗粒物粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)对大气颗粒物质量浓度和数浓度分布进行连续在线监测;同时结合地面气象参数和HYSPLIT轨迹模式,对颗粒物的来源和传输过程进行聚类、潜在源区贡献因子(PSCF)和浓度权重轨迹(CWT)分析.结果表明,APEC期间(11月5—11日)超细粒子(PM_(0.01~1))数浓度、细粒子(PM_(0.5~2.5))数浓度和粗粒子(PM_(2.5~10))数浓度分别为(17720.1±998.7)、(30.9±3.34)和(0.12±0.01) cm~(-3),比非APEC期间(即11月1—4日和11月12—30日)分别降低了28.8%、58.6%和64.7%;APEC期间ρ(PM_(2.5))为(36.1±2.4)μg·m~(-3),比非APEC期间降低55.5%.PM_(0.5~2.5)数浓度和PM_(2.5~10)数浓度降幅远大于PM_(0.01~1)数浓度,这表明APEC期间的减排措施对于PM_(0.5~2.5)和PM_(2.5~10)的控制效果优于PM_(0.01~1),说明APEC期间对PM_(0.5~2.5)、PM_(2.5~10)数浓度进行了更有效的控制.对北京气流后向轨迹聚类分析发现,来自蒙古国、内蒙古、河北西北部、河北南部方向的气流轨迹对应北京郊区的PM_(0.01~1)数浓度最高,为30593 cm~(-3),来自河北西北部、北京、天津、河北南部方向的气流轨迹对应北京郊区的PM_(0.5~2.5)、PM_(2.5~10)的数浓度及ρ(PM_(2.5))均为最高,分别为190 cm~(-3)、0.65 cm~(-3)、168μg·m~(-3).综合潜在源区贡献因子分析法(PSCF)和浓度权重轨迹分析(CWT)的结果分析发现,观测期间北京PM_(0.01~1)与PM_(0.5~2.5)、PM_(2.5~10)的潜在源区存在明显的区别,其中PM_(0.01~1)数浓度的潜在源区分布区域相对较广,主要分布在内蒙古中部、河北西北部、河北中南部和山西东北部等地区,而PM_(0.5~2.5)和PM_(2.5~10)数浓度的潜在源区分布基本一致,而且区域相对较集中,主要分布在河北北部、山西东北部和河北中南部等地区.APEC期间与非APEC期间ρ(PM_(2.5))的源区贡献因子分析和浓度权重轨迹分析表明,APEC期间ρ(PM_(2.5))的主要源区分布比非APEC期间相对较集中,主要位于北京当地、天津等附近地区,该地区对观测点ρ(PM_(2.5))的贡献值在24~40μg·m~(-3)之间.  相似文献   

16.
利用WRF-CMAQ模式对中山市2015年2月一次典型灰霾天气过程进行了数值模拟,并对2月11~12日这一主要污染时段本地和外地污染源的贡献进行了分析和减排评估.WRF-CMAQ模式能很好地模拟出该时段的气象条件、PM_(2.5)浓度以及能见度的变化过程.这次霾污染主要是受弱冷空气影响引起的,广州佛山、中山本地以及广东省外排放源对中山PM_(2.5)浓度的贡献率分别为33%、30%和27%,外地源的贡献相当大.中山本地工业源和农业源对中山PM_(2.5)的贡献分别为13%和8%,而广佛排放源中,工业源和农业源对中山PM_(2.5)的贡献率分别为20%和7%.对中山和广佛地区农业源减排30%、50%和70%后,中山的PM_(2.5)浓度分别下降6%、10%和15%,而对工业排放实施相同幅度的减排后,PM_(2.5)浓度分别下降11%、18%和23%.随着减排力度的增加,减排效率的变化并不明显.减排应在灰霾天气开始加重前实施,在PM_(2.5)浓度达到峰值前后减排的效果最为明显,而当灰霾天气趋于缓解时减排的效果会迅速下降.  相似文献   

17.
基于全球大气环流模式CAM3.1对2002—2003年模拟的全球沙尘气溶胶分布及其变化的评估,通过去除东亚沙漠(局地源)的敏感性模拟试验来分析北非、阿拉伯和中亚地区沙漠区(外部源)的沙尘气溶胶跨亚欧大陆传输对东亚地区大气沙尘气溶胶的贡献.结果表明,受到大气沙尘气溶胶的跨亚欧大陆传输的影响,东亚以外沙尘源对青藏高原大气贡献率最大,对我国北方干旱半干旱地区大气贡献率最小,对中国南方地区和日韩及邻近的西北太平洋地区大气贡献率基本相当.东亚地区秋(冬)季大气受到东亚以外沙尘源的影响最弱(强).我国北方干旱半干旱地区近地层大气沙尘气溶胶的外源贡献率秋季最小(约5%),冬季最大(约30%).青藏高原冬季60%~80%的近地面大气沙尘气溶胶来自东亚以外的沙漠区,而在秋季则只有约20%~60%.外源对东亚大气沙尘气溶胶柱浓度和对近地面大气沙尘气溶胶的影响具有基本一致的季节特征,但对柱浓度的贡献率一般偏大10%~40%.沙尘气溶胶跨亚欧大陆传输对东亚地区的影响主要集中在2~6 km的自由对流层.随对流层高度的增加东亚各地区外源贡献率均增加.青藏高原地区以年平均对流层沙尘气溶胶外源贡献率62%~81%成为东亚地区最大的影响区域.  相似文献   

18.
利用因子分离法区分NOx与人为、生物源VOCs(AVOCs、BVOCs)分别对东亚地区近地面O3浓度的纯贡献与协同贡献,基于区域空气质量模式(RAQM)讨论了2000年春、夏季排放源的总贡献以及协同贡献的空间分布.结果表明,光化学反应在日最大O3浓度的形成中占很大比例,我国北方大部分地区源的贡献夏季最大,南方受东亚季风影响,夏季最小.AVOCs与NOx、BVOCs与NOx的协同效应加强了光化学反应中O3的形成.AVOCs与NOx的协同贡献季节性变化特征显著,我国南方大部分地区夏季最小.BVOCs与NOx的协同贡献在我国南北方差异很大,春季高值区主要分布在南方大部分地区,北方峰值出现在夏季.说明臭氧调控对策的制定除源排放大小外还须考虑地域差异和季节变化.  相似文献   

19.
本研究结合大气环境观测数据,应用潜在源分析法(PSCF)和浓度权重轨迹分析法(CWT),以及基于WRF-CMAQ模式的传输矩阵和传输通量计算方法,研究分析了2019年秋冬季京津冀典型城市的大气污染特征与成因,量化评估了京津冀地区与周边省份之间的PM2.5传输贡献.结果表明,京津冀地区冬季较秋季污染严重,且重污染时段PM2.5浓度均与相对湿度呈显著的正相关,和风速呈显著的负相关;京津冀典型城市北京、天津和石家庄的潜在源区主要分布在京津冀本地、山西、内蒙古中部地区和山东地区,这与CWT结果基本吻合.京津冀各省域的PM2.5以本地排放贡献为主,北京、天津和河北的本地贡献率范围为54.33%~66.01%,京津冀受区域外传输的贡献率范围为0.11%~26.54%.传输通量结果表明,冬季PM2.5的传输主要受高空西北气流的作用,尤其清洁天气,高风速驱动清洁气团流入;秋季则主要受低空东南气流作用;传输通量呈现出显著的垂直分布特征,高空区域传输作用更为活跃,传输通量的流入/流出以及垂直分布与污染级别和RH呈现非线...  相似文献   

20.
为了对城市污染物进行详细区域来源解析,基于长沙市低成本传感器监测网络,收集了2019年10月PM2.5、PM10、SO2、NO2的高空间分辨率监测数据,对污染特征进行分析.同时,根据本地排放和背景浓度变化的不同相对频率,基于小波分析提取了污染物背景浓度并结合空间密集监测量化了城市环境中监测点的近场、远场及区域传输贡献.结果显示,2019年10月长沙市4项常规污染物中,PM2.5浓度较高,SO2浓度较低.小波分析提取各监测点背景浓度结果表明,部署在乡村的监测点PM2.5、PM10和NO2背景浓度平均水平较低,而城市总体数据分布更分散,存在明显的本地排放源.估计近场、远场及区域传输对城市监测点总污染水平贡献发现,研究期间,区域传输对监测点污染贡献最大.其中,PM2.5的区域贡献、远场贡献和近场贡献占比分别为43%、24%和17%;PM10的区域贡献占比较高为59%,远场贡献和近场贡献分别占比14%和16%;NO2的区域贡献、远场贡献和近场贡献占比分别为45%、24%和19%;而SO2主要以区域贡献为主,占比达78%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号