首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of maternal food environment and season were examined during spring and autumn on females, eggs and nauplii of Calanus finmarchicus, in different natural prey suspensions or cultures of Rhodomonas baltica. Females sampled in spring were in general larger, had higher protein content, and showed higher egg production and hatching rates, than in autumn. The cumulative egg production was almost double in spring compared to autumn (females fed R. baltica). Females had higher content of free amino acids (FAA) and free essential amino acids (EAA) in autumn than in the spring. Also, the FAA contents in eggs and nauplii were higher in autumn than in spring. In contrast, the composition of EAA in eggs was constant between seasons, indicating maternal regulation. The highest cumulative egg production was correlated with a high similarity in the free pool of EAA in the food suspension and the female copepod. Thus, the data support the hypothesis that similarity in the free pool of EAA of diet and female promotes high fecundity and egg hatching success in C. finmarchicus.  相似文献   

2.
We investigated the impact of copepods on the seston community in a mesocosm set-up, and assessed how the changes in food quantity, quality and size affected the condition of the grazers, by measuring the RNA:DNA ratios in different developmental stages of Calanus finmarchicus. Manipulated copepod densities did not affect the particulate carbon concentration in the mesocosms. On the other hand, chlorophyll a content increased with higher copepod densities, and increasing densities had a positive effect on seston food quality in the mesocosms, measured as C:N ratios and 3:6 fatty acid ratios. These food quality indicators were significantly correlated to the nutritional status of C. finmarchicus. In contrast to our expectations, these results suggest a lower copepod growth potential on higher quality food. However, in concordance with earlier studies, we found that when copepods were in high densities the large particles (>1000 µm3) decreased and that the smaller particles (<1000 µm3) increased in number. These patterns were closely linked to the condition of C. finmarchicus, which were of better condition (RNA:DNA ratios) with increasing biovolumes of large particles, and, conversely, lower RNA:DNA ratios with increasing biovolumes of smaller particles. Consequentially, the selective grazing by copepods stimulated increased biovolumes of smaller plankton, and this increase was responsible for the increased food quality, in terms of C:N and 3:6 ratios. Thus, we conclude that the decreasing growth potentials of C. finmarchicus were a result of a decrease of favourably sized food particles, induced by copepod grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
We studied the effect of a developing Skeletonema marinoi/Phaeocystis spp. bloom on Calanus finmarchicus hatching success, early naupliar survival and metabolism. Our focus was (1) on the development of reproductive rates during a bloom initiation, peak and decline in relation to the production of potentially toxic algal metabolites and (2) on the proportional importance of female nutrition versus naupliar food environment for the production of viable nauplii. Despite polyunsaturated aldehyde (PUA) production by both S. marinoi and Phaeocystis sp., we did not observe any harmful effects on hatching success or naupliar survival and condition in any stages of the short-term (<1 week) algal bloom. Hatching success appeared to be controlled by egg lipid composition, while the beneficial effect of a high food concentration was reflected in naupliar RNA:DNA ratio, protein content and total production of viable nauplii. The egg lipids reflected seston lipids, indicating that the egg fatty acid composition was not modified by the females. Our results suggest that unselective feeding and/or retention of specific lipids can induce qualitative food limitation, although recruitment during the S. marinoi/Phaeocystis sp. bloom was high.  相似文献   

4.
The genetic population structures of Atlantic northern bluefin tuna ( Thunnus thynnus thynnus) and albacore ( T. alalunga) were examined using allozyme analysis. A total of 822 Atlantic northern bluefin tuna from 18 different samples (16 Mediterranean, 1 East Atlantic, 1 West Atlantic) and 188 albacore from 5 samples (4 Mediterranean, 1 East Atlantic) were surveyed for genetic variation in 37 loci. Polymorphism and heterozygosity reveal a moderate level of genetic variability, with only two highly polymorphic loci in both Atlantic northern bluefin tuna ( FH* and SOD- 1*) and albacore ( GPI- 3* and XDH*). The level of population differentiation found for Atlantic northern bluefin tuna and albacore fits the pattern that has generally been observed in tunas, with genetic differences on a broad rather than a more local scale. For Atlantic northern bluefin tuna, no spatial or temporal genetic heterogeneity was observed within the Mediterranean Sea or between the East Atlantic and Mediterranean, indicating the existence of a single genetic grouping on the eastern side of the Atlantic Ocean. Very limited genetic differentiation was found between West Atlantic and East Atlantic/Mediterranean northern bluefin tuna, mainly due to an inversion of SOD- 1* allele frequencies. Regarding albacore, no genetic heterogeneity was observed within the Mediterranean Sea or between Mediterranean and Azores samples, suggesting the existence of a single gene pool in this area.  相似文献   

5.
6.
Molecular systematic analyses of marine taxa are crucial for recording ocean biodiversity, so too are elucidation of the history of population divergence and the dynamics of speciation. In this paper we present the joined phylogeography of the calanoid copepod Calanus helgolandicus (Claus 1863) from the North East (NE) Atlantic and the Adriatic Sea and the closely related C. euxinus (Hulsemann 1991) from the Black Sea based on sequences of a mitochondrial Cytochrome Oxidase subunit I (COI) fragment. Coalescent-based Bayesian methods and minimum spanning networks are used to reconstruct the history of population divergence. Our results reveal that copepod populations from all three basins share a great number of haplotypes and demonstrate a close genetic affinity of C. euxinus with C. helgolandicus. The data do not support significant genetic structuring among samples within seas. Coalescent analyses suggest divergences between NE Atlantic, Mediterranean, and Black Sea populations dating back to the middle Pleistocene, with the NE Atlantic–Mediterranean divergence being the earliest and the Mediterranean–Black Sea divergence the most recent. These middle Pleistocene dates are much older than the estimated dates of colonisation of the Mediterranean and Black Seas based on paleoclimatic scenarios. Our results do not rule out that the assumed colonisations took place but they indicate that the populations colonising the Mediterranean and the Black Sea were already, and have since remained, diverged. The chaetognath Sagitta setosa, which has a comparable distribution pattern and feeds upon the copepods, provides a unique opportunity to compare phylogeographic patterns and distinguish among alternative hypotheses. The dates produced in this paper are in agreement with those estimated elsewhere for S. setosa. We propose that a great deal of the genetic make-up of marine planktonic populations comprises divergences that date back to long before the last glacial maximum. We consider questions on the taxonomic status of C. euxinus to remain open. However, its high genetic affinity to the C. helgolandicus calls for further investigation.  相似文献   

7.
Reproductive activity and production of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were measured during a summer upwelling event off the coast of NW Spain. The upwelling pattern affected the distribution and fecundity of both species in the study area. The demographic composition of both populations and the stage of gonad maturation (e.g. the high abundance of fertilised females with mature ova) indicated active reproduction. C. carinatus, a highly fecund species associated with the African upwelling zones and considered as an upwelling specialist, showed low production rates (overall means of 15 eggs female–1 day–1 and 3% body C day–1), despite the fact that the food conditions (high phytoplankton biomass dominated by diatoms) seemed to be optimal for this species. By contrast, C. helgolandicus, a temperate species that shows a strong link between spring phytoplankton blooms and reproduction time, seems to be flexible enough to take full advantage of shorter-term, enhanced feeding conditions associated with the pulsed nature of the summer coastal upwelling. Both the egg and carbon-specific production rates attained by this species (overall means of 26 eggs female–1 day–1 and 12% body C day–1) were similar to values reported for a spring bloom situation. This high production would imply a long spring–summer recruitment event of C. helgolandicus in these waters. For both species the stage of gonad maturation was significantly correlated with their egg production rates and likely influenced by the food conditions; a species-specific nutritional requirement for final oogenesis is suggested. The carbon condition factor (carbon weight/prosome volume) of C. carinatus females was higher than that of C. helgolandicus, suggesting differential use of the carbon ingested; C. helgolandicus seems to use all ingested carbon to produce eggs at a high rates, whereas C. carinatus seems to store part of the ingested carbon as lipid reserves to ensure female survival and to support production during subsequent unfavourable food conditions.Communicated by S.A. Poulet, Roscoff  相似文献   

8.
Effects of food availability and season on the free amino acid (FAA) and total protein content of the copepod Calanus finmarchicus females were investigated in two mesocosm experiments on the Norwegian west coast in spring and autumn. Starved C. finmarchicus females showed no change in total FAA content, but the FAA pool composition changed drastically. During the first 10 days of starvation the protein content showed a moderate decline (<2 µg ind -1); however, during the following 21 days the total content was drastically reduced, from 63 to 9 µg ind -1. This supports the notion of a sequential catabolism of endogenous nutrients during starvation. In females at high food concentrations, the body protein content increased during spring, but decreased during autumn. The FAA pool composition of females differed between spring and autumn in 14 of the 18 FAA investigated. Reduced body protein content and increased proportion of essential free amino acid were observed during starvation. Similar changes were observed in females sampled at the end of the mesocosm experiments in the autumn. The results suggest that mature C. finmarchicus females are in a negative protein balance during autumn, despite high food concentrations, contributing to a lower fitness than in females maturing during the spring.  相似文献   

9.
Previous research on gametic incompatibility in marine invertebrates suggests that for highly dispersive marine invertebrate species, barriers to fertilization among closely related taxa are often incomplete and sometimes asymmetric. The nature of these barriers can dramatically affect the patterns of gene flow and genetic differentiation between species, and thus speciation. Blue mussels, in the genus Mytilus, are genetically distinct in allopatry yet hybrids are present wherever any two species within the group co-occur. The present study sampled M. edulis (L.) and M. trossulus (Gould) in May and June 2001 from the East Bay section of Cobscook Bay, Maine, USA (latitude 44°56′30″N; longitude 67°07′50″W), where the two species are sympatric. Gamete incompatibility was investigated in a series of laboratory fertilizations carried out in July 2001. The proportion of fertilized eggs typically exceeded 80% at sperm concentrations of 103–104 ml?1 among intraspecific matings (n=18), but was <30% even at sperm concentrations in excess of 105–106 ml?1 for interspecific matings (n=13). Further analysis indicated that approximately 100- to 700-fold higher sperm concentrations were required to achieve 20% fertilization in interspecific matings relative to intraspecific matings, indicating strong barriers to interspecific fertilization. The proportion of fertilized eggs did not follow this general pattern in all matings, however. The eggs from two (out of five) M. edulis females were almost as receptive to M. trossulus sperm as they were to M. edulis sperm. In contrast, the eggs from all M. trossulus females (n=3) were unreceptive to M. edulis sperm, suggesting that fertilization barriers between these species may be asymmetric. Given the experimental design employed in this study, the results are also consistent with a strong maternal or egg effect on the level of interspecific gamete compatibility in M. edulis.  相似文献   

10.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

11.
Life-history features of the sympatric amphipods Themisto pacifica and T. japonica in the western North Pacific were analyzed based on seasonal field samples collected from July 1996 through July 1998, and data from laboratory rearing experiments. T. pacfica occurred throughout the year, with populations peaking from spring to summer. In contrast, T. japonica were rare from autumn to early winter, but became abundant in late winter to spring. Mature T. pacifica females and juveniles occurred together throughout the year, indicating year-round reproduction. Mature T. japonica females were observed only in spring, and juveniles occurred irregularly in small numbers, suggesting limited, early-spring reproduction in this study area. Size composition analysis of T. pacifica identified a total of eight cohorts over the 2 years of the study. Due to the smaller sample size and rarity of mature females (>9.6 mm) and males (>7.1 mm), cohort analyses of T. japonica were not comparable. Laboratory rearing of specimens at 2°C, 5°C, 8°C and 12°C revealed that a linear equation best expressed body length growth by T. pacifica, while a logistic equation best expressed body length growth by T. japoncia. Combining these laboratory-derived growth patterns with maturity sizes of wild specimens, the minimum and maximum generation times of females at a temperature range of 2–12°C were computed as 32 days (12°C) and 224 days (2°C), respectively, for T. pacifica, and 66 days (12°C) and 358 days (2°C), respectively, for T. japonica. The numbers of eggs or juveniles in females marsupia increased with female body length and ranged from 23 to 64 for T. pacifica and from 152 to 601 for T. japonica. Taking into account the number of mature female instars, lifetime fecundities were estimated as 342 eggs for T. pacifica and 1195 eggs for T. japonica. Possible mechanisms for the coexistence of these two amphipods in the Oyashio region are also discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

12.
The pelagic copepod Calanus pacificus ranges nearly continuously across temperate-boreal regions of the North Pacific Ocean and is currently divided into three subspecies—C. pacificus oceanicus, C. pacificus californicus, C. pacificus pacificus—based on subtle morphological differences and geographic location. The relation between geography and genetic differentiation was examined for 398 C. pacificus individuals sampled from six widely distributed locations across the North Pacific, including an open ocean site and coastal sites on both sides of the North Pacific basin. For each individual copepod, the DNA sequence was determined for a 421-bp region of the mitochondrial coxI gene (mtCOI). A total of sixty-three different mtCOI sequences, or haplotypes, were detected, with a sequence divergence between haplotypes of 0.2–3.1%. The number and distribution of haplotypes varied with sampling location; 12 haplotypes were distributed across multiple sampling locations, and 51 occurred at only one location. Five genetically distinct populations were detected based on F ST values. Haplotype minimum spanning networks, nucleotide divergence and F ST values indicated that individuals from coastal sites in the North Pacific Ocean were more closely related to each other than to individuals from the open ocean site at Station P. These results provide genetic support for the designation of two subspecies—a coastal subspecies that consists of what is currently referred to as C. p. pacificus and C. p. californicus and an open ocean subspecies C. p. oceanicus. This work also indicates that planktonic copepods with potentially high dispersal capacity can develop genetically structured populations in the absence of obvious geographic barriers between proximate locales within an ocean basin.  相似文献   

13.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

14.
15.
The group of subspecies of Patella ulyssiponensis, described by Christiaens, was widely known as Patella aspera until recently. The group extends throughout the Mediterranean, on all Macaronesian islands, along the North African coast, and in Europe, as far north as southern Norway. Throughout its range it displays great variation in shell sculpture and colour. The aim of this work was to re-examine the various subspecies proposed by Christiaens and, genetically, to test the hypothesis that European continental populations belong to a different species than the one composed by Macaronesian (north-west African) populations. In the present work, this group was studied by allozyme electrophoresis of 21 loci and by six morphological variables. The monomorphic locus of malate dehydrogenase (Mdh-1) was found to be diagnostic for distinguishing European continental populations from those of north-west African archipelagos, confirming the specific status of both groups. The allele observed at this locus in the Macaronesian populations was novel, while European continental populations showed a plesiomorphic one, shared with all other north-west Atlantic patellids with the exception of Patina pellucida, suggesting a more recent origin of the Macaronesian species from the continental forms. Both species showed a genetic identity of 0.730±0.061, which allowed rough estimations of 6.5–3 Mya since speciation. The subspecies Patella ulyssiponensis deserta described by Christiaens was not confirmed by our genetic data. Other loci (glyceraldehyde-3-phosphate dehydrogenase and the second locus of lactate dehydrogenase) were partially diagnostic, in which both species showed different most common alleles. Morphologically, both species are easily recognised by shell characters and the results agree with previous findings, that continental populations are more homogeneous in shell morphology and radula characters than populations from the Macaronesia. This work supports retention of the earliest valid name, Patella ulyssiponensis Gmelin, with Lisbon, Portugal as type locality, for the European continental species, and Patella aspera Röding for the Macaronesian populations. Population subdivision within species was measured by theta, the estimator of Fst, showing in both P. aspera and P. ulyssiponensis a high degree of genetic structuring (=0.226 and 0.182, respectively) mostly explained by the large distances separating the populations within species.Communicated by J.P.Thorpe, Port Erin  相似文献   

16.
Among the diverse patterns of energy allocation to the offspring of gastropods, the presence of egg capsules to protect embryos is common. Females of the edible snail Zidona dufresnei attach egg capsules to hard substrates in shallow Argentine Patagonian waters (40°45′S, 64°56′W) during spring-summer. Embryonic development takes about 30 days at 22°C. In this study, three likely capsule predator species and the marks left by each on egg capsule walls were identified in laboratory experiments in February 2010. Abundances of predators and egg capsules with evidence of predation were assessed in the field in the summers of 2010 and 2011. Under laboratory conditions (N = 10 replicates per treatment and control), the predation rate by the chiton Chaetopleura isabellei was the highest (up to 90%), followed by the gastropod Tegula patagonica and the crab Neohelice granulata (~20% each). Nearly 60% of 41 capsules found in the field showed signs of predation. According to the marks identified in the laboratory, C. isabellei was responsible for 79% of this predation, and T. patagonica for the rest. Predation appears to be important during the encapsulated early life and could be an agent for selecting for resistant capsule walls and a relatively shorter development time.  相似文献   

17.
This study devised a staging system for, and monitored, the gonad development of the limpet species Patella vulgata and Patella ulyssiponensis on the South West coast of Ireland using histological techniques. Maturation began in the males of both species in January and in the females it began in March. There was no statistical difference in gonad development between sexes and between species. Spawning in the male P. vulgata occurred from September to December 2003 and in September and October 2004. In female P. vulgata spawning occurred from October to December 2003, no spawning of females was observed in 2004. In male P. ulyssiponensis spawning occurred in November and December 2003 and from September 2004 to December 2004. Spawning was observed from November 2003 to January 2004 and in September 2004 in female P. ulyssiponensis. Sex ratios also varied between the species and between months sampled. Nevertheless more males were observed in both species.  相似文献   

18.
The availability of different forms of nitrogen in coastal and estuarine waters may be important in determining the abundance and productivity of different phytoplankton species. Although urea has been shown to contribute as much as 50% of the nitrogen for phytoplankton nutrition, relatively little is known of the activity and expression of urease in phytoplankton. Using an in vitro enzyme assay, urease activities were examined in laboratory cultures of three species: Aureococcus anophagefferens Hargraves et Sieburth, Prorocentrum minimum (Pavillard) Schiller, and Thalassiosira weissflogii (Grunow) Fryxell et Hasle. Cultures of P. minimum and T. weissflogii were grown on three nitrogen sources (NO3m, NH4+, and urea), while A. anophagefferens was grown only on NO3m and urea. Urease was found to be constitutive in all cultures, but activity varied with growth rate and assay temperature for the different cultures. For A. anophagefferens, urease activity varied positively with growth rate regardless of the N source, while for P. minimum, urease activity varied positively with growth rate only for cultures grown on urea and NH4+. In contrast, for T. weissflogii, activity did not vary with growth rate for any of the N sources. For all species, urease activity increased with assay temperature, but with different apparent temperature optima. For A. anophagefferens, in vitro activity increased from near 0-30°C, and remained stable to 50°C, while for P. minimum, increased in vitro activity was noted from near 0-20°C, but constant activity was observed between 20°C and 50°C. For T. weissfloggii, while activity also increased from 0°C to 20°C, subsequent decreases were noted when temperature was elevated above 20°C. Urease activity had a half-saturation constant of 120-165 wg atom N lу in all three species. On both an hourly and daily basis, urease activity in A. anophagefferens exceeded nitrogen demand for growth. In P. minimum, urease activity on an hourly basis matched the nitrogen demand, but was less than the demand on a daily basis. For T. weissflogii, urease activity was always less than the nitrogen demand. These patterns in urease activity in three different species demonstrate that while apparently constitutive, the regulation of activity was substantially different in the diatom. These differences in the physiological regulation of urease activity, as well as other enzymes, may play a role in their ecological success in different environments.  相似文献   

19.
Intertidal endobenthic bivalves are often dislodged from sediments by hydrodynamic forces. As a result, they encounter the dangers of predation and desiccation, which are generally harsh near the sediment surface. To cope with such dangers, the bivalves possibly possess: (1) a strong body to endure predation and desiccation stress, (2) quick mobility to avoid the stresses, or (3) a high growth rate for attaining a size refuge. The present study examined which of these modes are adopted by the subtropical cobbled-shore Venus clams Gafrarium tumidum (Röding, 1798) and Ruditapes variegatus (Sowerby, 1852), revealing the following interspecific differences. (1) G. tumidum survived better than R. variegatus did in harsh experimental conditions, namely: the experimental cages exposed to predation and desiccation on a cobbled shore; a laboratory aquarium with a predatory crab Scylla serrata; and ovens with high temperatures (27°C and 34°C). (2) R. variegatus was more mobile than G. tumidum was, digging into the sediment on a cobbled shore more rapidly at both high and low tides. (3) The two species with shell lengths 20–30 mm showed similar growth rates (median: –0.2 to 44.5 m day–1) in seasonal mark–recapture surveys over 2 years. Overall, to cope with the dangers of predation and desiccation G. tumidum appears to have a strong body, while R. variegatus displays rapid mobility, and neither species seems to attain a size refuge through rapid growth. Such species-specific modes are discussed in relation to the interspecific differences found in shell morphology.Communicated by T. Ikeda, Hakodate  相似文献   

20.
The skill of recognizing and reacting to predators is often based on a learned component. Few studies have examined the role of learning in spiny lobster anti-predator behavior. We investigated whether European spiny lobster (Palinurus elephas) shelter selection is influenced by olfactory stimuli released by one of the most common lobster predators, the common octopus (Octopus vulgaris), and whether the behavioral response to octopus chemical stimuli is innate or influenced by experience. In experimental arenas, we conditioned wild-caught lobsters with three levels of predation threat: no threat, with no predator–prey interaction; medium threat, with odor and visual predator cues only; high threat, active predation risk. We subsequently tested the shelter choice of the conditioned lobster under different experimental conditions: (1) shelter plus seawater; (2) shelter plus seawater plus chemical octopus cue. Our results showed significant differences in mean shelter occupancy with conditioning level. We conclude that P. elephas individuals use chemosensory systems in predator-avoidance mechanisms. Moreover, lobsters subject to a training period of high-level predation threat were able to learn the octopus chemical stimuli and treat its odor as a cue related to predation risk. The findings relative to the spiny lobster learning abilities could be an important tool for future management of lobster populations, e.g., by re-introduction of reared juveniles, which have not yet experienced predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号