首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Environmental Science and Pollution Research - Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production....  相似文献   

2.
Ozonation of pentachlorophenol in unsaturated soils   总被引:1,自引:0,他引:1  
A heterogeneous model was developed to describe interactions between ozone and hydrophobic organic compounds, exemplified by pentachlorophenol, in highly gas-saturated vadose zones where water moisture was limited to a thin film on soil particle surfaces. The soil was assumed to be free of soil organic matter. The model included a set of transient equations considering diffusion with simultaneous chemical reaction and hydrophobic partitioning. From dimensionless analysis, it was found that the film concentrations of ozone and the hydrophobic organic component were dependent on the Damk?hler numbers. Effects of Damk?hler numbers on the film profiles of components were examined. With the interfacial flux of ozone calculated from film profiles, dimensionless governing equations of ozone transport and contaminant removal across an experimental column were established. These equations were dependent on the Stanton number. One-dimensional column experiments were conducted to test the model. The optimal time for flow rate adjustment during the process was approximated. Finally, effects of ozone velocity and ozone gas concentration on the Stanton number were evaluated.  相似文献   

3.
Culms of Phragmites australis were grown in vermiculite in a greenhouse. Some plants were exposed to 1000 microg/g Cu or Pb or Zn, or combinations of two or three of those metals. When plants reached senescence, they were harvested and analyzed for metal concentrations in upper leaves, lower leaves, stems and roots. While all metals accumulated in highest concentrations in the roots, Zn accumulated in aboveground tissues far more than the other metals. Furthermore, the concentration of any one metal in the different tissues was affected by the presence of other metals. The amount of copper in upper leaves increased when Zn was also present with the Cu. The amount of Cu in roots was increased in the presence of Pb and/or Zn. The amount of Zn in lower leaves was reduced when Cu was also present along with Zn. Thus, when combinations of metals were present, the distribution of metals was altered. The most important interactions appeared to be of Cu and Zn, which may reflect competition for binding sites on metal-binding proteins.  相似文献   

4.
Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20–320 mg kg?1 Cd), Zn (150–2,400 mg kg?1 Zn) or Cd + Zn (20?+?150, 40?+?300, 80?+?600 mg kg?1). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10 % shoot biomass reduction was 115 μg g?1 for Cd and 1,300 μg g?1 for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg?1 Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils.  相似文献   

5.
Environmental Science and Pollution Research - The purpose of this study is to evaluate the capability of Secale montanum trusted for phytoremediation of contaminated soils with lead (Pb) and...  相似文献   

6.
Electrokinetic-enhanced phytoremediation of soils: Status and opportunities   总被引:2,自引:0,他引:2  
Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation–electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites.  相似文献   

7.
The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil.  相似文献   

8.
Mixed pollution is a characteristic of many industrial sites and constructed wetlands. Plants possessing an enzymatic detoxifying system that is able to handle xenobiotics seems to be a viable option for the removal of mixed persistent contaminants such organochlorines (OCs: monochlorobenzene (MCB), 1,4-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB), γ-hexachlorocyclohexane (HCH)). In this study, Phragmites australis plants were exposed to sub-lethal concentrations of OCs (7 days), in single-exposure (0.8 to 10 mg?l?1) and in mixture of OCs (0.2 mg?l?1 MCB?+?0.2 mg?l?1 DCB?+?2.5 mg?l?1 TCB?+?0.175 mg?l?1 HCH). Studies were conducted on the detoxification phase II enzymes; glutathione S-transferases (GST), and glucosyltransferases (UGT). Measurements of GST and UGT activities revealed that OCs may be buffered by glutathione and glucose conjugation. There appeared to be a correlation between the effects on phase II enzymes and the degree of chlorination of the benzene ring with, for example, the greatest effects being obtained for HCH exposure. In the case of mixed pollution, the induction of some GST isoenzymes (CDNB, 35 % non-significant) and UGT (118 %) in leaves and the inhibition of phase II enzymes in the other organs were measured. UGTs appear to be key enzymes in the detoxification of OCs.  相似文献   

9.
Potentials and drawbacks of chelate-enhanced phytoremediation of soils.   总被引:28,自引:0,他引:28  
Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysimeter studies were conducted to study the phytoremedation potential of EDGA and citric acid and to evaluate its effects on microbial activity and leaching of Cd, Zn Cu and Pb. Grass, lupine and yellow mustard were grown on a moderately polluted acid (pH 4.5) sandy soil that contained 2 mg kg(-1) Cd and 200 mg kg(-1) Zn. Citric acid appeared to be degraded microbially within a few days after addition which limited its potential for long-lasting remediation studies. EDGA enhanced metal solubility but plant uptake did not increase accordingly. The metal shoot:root ratio increased upon addition of EDGA but it also reduced the net shoot and root biomass production of both lupine and yellow mustard. Bacterial biomass was higher in both the citric and EDGA treated pots but bacterial activity remained unaffected. The number of microbivorous nematodes was greatly reduced upon addition of EDGA which was most likely related to the reduced biomass production and, to a smaller extent, to the changes in the composition of the available food. Furthermore, EDGA enhanced metal leaching in the lysimeter study which could lead to groundwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation methods, therefore, seems necessary.  相似文献   

10.
Dissipation of pentachlorophenol (PCP) in soil was investigated and the chemical relationships with soil properties were addressed. The results indicate that the dissipation of extractable PCP residues can be described using first-order kinetics equations, with a half-dissipation time (T(1/2)) ranging from 6.5 to 173.3d. The sharply different patterns of PCP dissipation in different soils were closely related to soil properties. Correlations of stepwise regression equations obtained were significant at 0.01 probability level between soil parameters and extractable PCP residues (R(2)=0.974**) as well as T(1/2) values (R(2)=0.882**). Using pH together with organic carbon content (OC) and soil particle size distribution, the dissipation dynamics of PCP in soil could be accurately predicted.  相似文献   

11.
Cheng X  Peng R  Chen J  Luo Y  Zhang Q  An S  Chen J  Li B 《Chemosphere》2007,68(3):420-427
Spartina alterniflora, a perennial grass with C(4)-photosynthesis, shows great invading potential in the coastal ecosystems in the east of China. We compared trace gas emissions from S. alterniflora with those from a native C(3) plant, Phragmites australis, by establishing brackish marsh mesocosms to experimentally assess the effects of plant species (S. alterniflora vs. P. australis), flooding status (submerged vs. non-submerged), and clipping (plants clipped or not) on trace gas emissions. The results show that trace gas emission rates were higher in S. alterniflora than P. australis mesocosms due to the higher biomass and density of the former, which could fix more available substrates to the soil and potentially emit more trace gases. Meanwhile, trace gas emission rates were higher in non-submerged than submerged soils, suggesting that water might act as a diffusion barrier in the brackish marsh mesocosms. Interestingly, methane (CH(4)) emission rates were lower in clipped non-submerged mesocosms than in non-clipped submerged mesocosms, but nitrous oxide (N(2)O) emissions were enhanced. CH(4) emissions were significantly correlated with the plant biomass and stem density (R(2)>0.48, P<0.05) for both species, suggesting that both the two species might play important roles in CH(4) production and transport and also act as suppliers of easily available substrates for the methanogenic bacteria in wetland ecosystems. N(2)O emissions, however, were not significantly correlated with plant biomass and density (P>0.05).  相似文献   

12.
He  Changfei  Zheng  Li  Gao  Wei  Ding  Jinfeng  Li  Chengxuan  Xu  Xiyuan  Han  Bin  Li  Qian  Wang  Shuai 《Environmental science and pollution research international》2022,29(36):54619-54631
Environmental Science and Pollution Research - The quorum sensing (QS) system plays a significant role in the bacteria-bacteria or plant-bacteria relationships through signal molecules. However,...  相似文献   

13.
A microcosm experiment was conducted to investigate the dissipation of available benzo[a]pyrene (BaP) in soils co-contaminated with cadmium (Cd) and pyrene (PYR) during aging process. The available residue of BaP in soil was separated into desorbing and non-desorbing fractions. The desorbing fraction contributed more to the dissipation of available BaP than the non-desorbing fraction did. The concentration of bound-residue fraction of BaP was quite low across all treatments. Within the duration of this study (250 days), transformation of BaP from available fractions to bound-residue fraction was not observed. Microbial degradation was the dominant mechanism of the dissipation of available BaP in the soil. The dissipation of available BaP was significantly inhibited with the increment in Cd level in the soil. The addition of PYR (250 mg kg?1) remarkably promoted the dissipation of available BaP without reducing Cd availability in the soil. The calculated half-life of available BaP in the soil prolonged with the increment in Cd level; however, the addition of PYR shortened the half-life of available BaP by 13.1, 12.7, and 32.8 % in 0.44, 2.56, and 22 mg Cd kg?1 soils, respectively. These results demonstrated that the inhibiting effect of Cd and the promoting effect of PYR on the dissipation of available BaP were competitive. Therefore, this study shows that the bioremediation process of BaP can be more complicated in co-contaminated soils.  相似文献   

14.
GOAL, SCOPE AND BACKGROUND: Pentachlorophenol (PCP) is the second highest volume pesticide used in the United States. It is a mutagenic compound whose exposure poses significant health effects, One of the most desirable, environmentally friendly treatment methods is bioremediation. For soil-based contamination, the effectiveness of bioremediation will also be affected by the presence of an active indigenous population, sorption of the contaminant onto the soil, and environmental parameters. METHODS: Two pure strains and their mixed culture were used to evaluate PCP biodegradation in two different field soils, Columbia (CO) and New Mexico (NM). Biostimulation of the indigenous microbes was evaluated by adding nutrients. The efficiency of adding bacteria strains (bioaugmentation) for degrading PCP was determined with Arthrobacter sp., Flavobacterium sp. and a 50:50 mixture of the two bacteria strains. RESULTS: In CO soil, only 24%, 12% and 25% of the initial PCP concentration were degraded by Flavobacterium sp., Arthrobacter sp. and mixed culture, respectively. Arthrobacter sp. was used in NM soil with two initial concentrations and achieved degradation efficiencies of 57% and 61% for 361 and 95 mg kg- concentrations, respectively. Discussion. Analysis via statistical methods showed that the bacteria had different efficiencies on PCP degradation in each soil. 2 CONCLUSIONS: All bacteria catalyzed a higher PCP degradation when present in NM soil. Second, Flavobacterium sp. degraded more PCP than Arthrobacter sp. in CO soil. The mixed culture achieved the highest degradation efficiency regardless of the initial concentration or soil origin. RECOMMENDATIONS AND PERSPECTIVES: The effect of the soil properties, such as the soil organic matter (SOM) on PCP biodegradation should be investigated. Future work can also investigate the effect of aging time on biodegradation.  相似文献   

15.
Metal contents of decomposing leaf blades, leaf sheaths and stems of common reed (Phragmites australis) were monitored by a litter bag method on the sediment of an intertidal brackish marsh in the Scheldt estuary (The Netherlands). On monthly intervals, two litter bags were retrieved from the marsh during 9 months for both leaf blades and sheaths and during 16 months for stems. All samples were dried, weighed and analysed for ash and Cd, Cu, Cr, Ni, Pb and Zn contents. Most concentrations increased considerably during the decomposition. Generally, also a very important net metal inflow into the litter bags could be observed. The inflow was highest for leaf blades. High correlations between ash contents and metal concentrations for leaf blades suggest that the increase of leaf blade metal contents can be due to physicochemical sorption of dissolved metals and an important infiltration of mud particles, which were not removed by rinsing the leaf blades with distilled water preceding the analyses. For stems, smaller amounts of inflowing ash and even outflowing ash amounts were found, which suggests that inflow of inorganic particles is not the major factor determining metal accumulation by stems on medium term. Ergosterol concentrations in stem tissue however proved to be correlated with metal contents, which suggests a significant role of fungal litter colonizers in metal accumulation. For leaf sheaths, the effects of physicochemical sorption, infiltration of mud particles and incorporation by microbial litter colonizers do not seem to be as pronounced as for stems and leaf blades.  相似文献   

16.

The retention of heavy metal (HM) was studied in root and rhizomes (BLG), stems (ST), and leaves (LF) of Phragmites australis (common reed) seedlings collected from different locations, differing in the scale of anthropogenic interference. The analysis includes the reference samples of sediments in uncontaminated lake Garczonki and contaminated roadside ditch in Cieplewo. The concentrations of Zn, Cu, Pb, Cd, Ni, and Cr were analyzed in plant tissues and sediments using the atomic absorption spectrometry and inductively coupled plasma mass spectrometry. The general assessment of sediments collected in the Garczonki lake showed a good environmental status; while in the roadside ditch in Cieplewo, the sediments were considerably polluted with HM. In the first stage of plant growth, all of the analyzed HMs are mainly inhibited by BLG system. The decreasing trend of elements was as follows: BLG > ST > LF. The organs followed different decreasing trends of HM concentration; the trend Zn > Cu > Ni > Cr > Pb > Cd was found in ST and LF for the Garczonki lake seedlings and for BLG and LF for the roadside ditch in Cieplewo seedlings. Zn showed the highest concentration, while Cd the lowest concentration in each of the examined organs. The bioaccumulation factor indicated the higher mobility of HM in seedlings in the Garczonki lake than in the roadside ditch in Cieplewo. The morphological studies suggest the good state and health of seedling from both sites; however, the reduction of root hair surface was observed for the roadside ditch seedlings. The anatomical studies present changes in the size of the nucleus and count of chloroplasts in LF. No reaction on HM contamination sediments in the seedlings from the roadside ditch in Cieplewo in the aerenchyma was noted. Potentially, both types of seedlings can be used to decontaminate environments rich in HM. However, the level of HM absorbed by seedlings (in the first stage of growth) should be considered due to the behavior in the target phytoremediation site.

  相似文献   

17.
A J Renneberg  M J Dudas 《Chemosphere》2001,45(6-7):1103-1109
There are many industrial sites, such as gas processing plants, that are contaminated with both mercury and hydrocarbons. These sites tend to be localized but can have very high concentrations of mercury in the soil and heterogeneous distribution of hydrocarbons. The original form of mercury in many cases was elemental mercury from broken manometers. Over time the mercury has become redistributed within soil and has undergone chemical transformations into new forms. The forms of mercury will govern the chemical behavior and the availability of the mercury to biological receptors. The availability of the mercury is important as it will govern the risk associated with the contaminated soil and will also determine the effectiveness of any attempts at remediation. In the present study a chemical extraction protocol was used to determine the forms of mercury in soil originally contaminated by spillage of elemental mercury and petroleum hydrocarbons. Chemical extractions have been used in the past to determine the forms of mercury in uncontaminated soils and several researchers have used them to study contaminated soils. However, to date, no researchers have studied the forms of mercury in soils following years of weathering of elemental mercury after a spill. This study shows that decades after the original spill the elemental mercury has transformed and is dominantly (up to 85%) associated with soil organic matter, and to a lesser extent the mineral fraction of soil.  相似文献   

18.
Metal concentrations in soils are locally quite high, and are still increasing due to many human activities, leading to elevated risk for health and the environment. Phytoremediation may offer a viable solution to this problem, and the approach is gaining increasing interest. Improvement of plants by genetic engineering, i.e. by modifying characteristics like metal uptake, transport and accumulation as well as metal tolerance, opens up new possibilities for phytoremediation. So far, only a few cases have been reported where one or more of these characteristics have been successfully altered; e.g. mercuric ion reduction causing improved resistance and phytoextraction, and metallothionein causing enhanced cadmium tolerance. These, together with other approaches and potentially promising genes for transformation of target plants are discussed.  相似文献   

19.
Biodegradable chelant-enhanced phytoremediation offers an alternative treatment technique for metal contaminated soils, but most studies to date have addressed on phytoextraction efficiency rather than comprehensive understanding of the interactions among plant, soil microbes, and biodegradable chelants. In the present study, we investigated the impacts of biodegradable chelants, including nitrilotriacetate, S,S-ethylenediaminedisuccinic acid (EDDS), and citric acid on soil microbes, nitrogen transformation, and metal removal from contaminated soils. The EDDS addition to soil showed the strongest ability to promote the nitrogen cycling in soil, ryegrass tissue, and microbial metabolism in comparison with other chelants. Both bacterial community-level physiological profiles and soil mass specific heat rates demonstrated that soil microbial activity was inhibited after the EDDS application (between day 2 and 10), but this effect completely vanished on day 30, indicating the revitalization of microbial activity and community structure in the soil system. The results of quantitative real-time PCR revealed that the EDDS application stimulated denitrification in soil by increasing nitrite reductase genes, especially nirS. These new findings demonstrated that the nitrogen release capacity of biodegradable chelants plays an important role in accelerating nitrogen transformation, enhancing soil microbial structure and activity, and improving phytoextraction efficiency in contaminated soil.  相似文献   

20.
He Y  Xu J  Wang H  Zhang Q  Muhammad A 《Chemosphere》2006,65(3):497-505
Sorption of pentachlorophenol (PCP) by pure minerals and humic acids were measured to obtain additional perspective on the potential contributions of both clay minerals and soil organic matter (SOM) to contaminants retention in soils. Four types of common soil minerals and two kinds of humic acids (HAs) were tested. The sorption affinity for PCP conformed to an order of HAs > K-montmorillonite > Ca-montmorillonite > goethite > kaolinite. Such a difference in sorption capacity could be attributed to the crucial control of HAs. Clay minerals also had their contribution, especially K-montmorillonite, which played an important, if not dominant, role in the controlling process of PCP sorption. By removing 80% (on average) of the organic carbon from the soils with H(2)O(2), the sorption decreased by an average of 50%. The sorption reversibility had been greatly favored as well. Considering the uncharged mineral fractions in soil before and after H(2)O(2)-treated, the main variation in sorption behavior of the soil might thus be related to the removed organic carbon and the reduced pH. This testified rightly the interactive effect of SOM and clay minerals on PCP sorption as a function of pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号