首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, uranium(VI) was successfully removed from aqueous solutions using heat-treated carbon microspheres based on a batch adsorption technique. Influence of the parameters, such as solution pH, contact time, initial uranium(VI) concentration, and temperature on the removal efficiency have been investigated in detail. The results reveal that the maximum adsorption capacity of the heat-treated carbon microspheres toward uranium(VI) is 92.08 mg g?1, displaying a high efficiency for the removal of uranium(VI) from aqueous solution. The experimental data are analyzed using sorption kinetic models. It is revealed that the process obey the pseudo-second-order kinetic model, the determining step might be chemical sorption. The thermodynamic parameters, such as ΔH°, ΔS°, and ΔG° show that the process is endothermic and spontaneous. This work provides an efficient, fast, and convenient approach for the removal of uranium(VI) from aqueous solutions.  相似文献   

2.
In this study, activated carbon was prepared from waste tire by KOH chemical activation. The pore properties including the BET surface area, pore volume, pore size distribution, and average pore diameter were characterized. BET surface area of the activated carbon was determined as 558 m2/g. The adsorption of uranium ions from the aqueous solution using this activated carbon has been investigated. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied by a batch method. The optimum pH for adsorption was found to be 3. The removal efficiency has also been determined for the adsorption system as a function of initial concentration. The experimental results were fitted to Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherm models. A comparison of best-fitting was performed using the coefficient of correlation and the Langmuir isotherm was found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of uranium ions onto waste tire activated carbon was 158.73 mg/g. The thermodynamic equilibrium constant and the Gibbs free energy were determined and results indicated the spontaneous nature of the adsorption process. Kinetics data were best described by pseudo-second-order model.  相似文献   

3.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

4.

This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pHpzc) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L)?1/n] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  相似文献   

5.
The sorption capacity of nanoporous titanosilicate Engelhard titanosilicate number 4 (ETS-4) and silica-coated magnetite particles derivatised with dithiocarbamate groups towards Hg(II) was evaluated and compared in spiked ultra-pure and spiked surface-river water, for different batch factors. In the former, and using a batch factor of 100 m3/kg and an initial Hg(II) concentrations matching the maximum allowed concentration in an effluent discharge, both materials achieve Hg(II) uptake efficiencies in excess of 99 % and a residual metal concentration lower than the guideline value for drinking water quality. For the surface-river water and the same initial concentration, the Hg(II) uptake efficiency of magnetite particles is outstanding, achieving the quality criteria established by the Water Framework Directive (concerning Hg concentration in surface waters) using a batch factor of 50 m3/kg, while the efficiency of ETS-4 is significantly inferior. The dissimilar sorbents’ Hg(II) removal efficiency is attributed to different uptake mechanisms. This study also highlights the importance of assessing the effective capacity of the sorbents under realistic conditions in order to achieve trustable results.  相似文献   

6.
It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1–10 mg L?1 (1–10 ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53 mg g?1 at 25 °C, for 2.00 g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite.  相似文献   

7.
Utilization of agrowaste materials for the production of activated carbon, as an excellent adsorbent with large surface area, is well established industrially, for dephenolation of wastewater. In the present work, dried pods of Prosopis cineraria—a novel and low-cost agrowaste material—were used to prepare activated carbons by zinc chloride activation. Batch adsorption experiments were carried out to study the effects of various physicochemical parameters such as initial phenol concentration, adsorbent dose, initial solution pH, and temperature. Pseudo-first-order second-order and diffusion kinetic models were used to identify the possible mechanisms of such adsorption process. The Langmuir and Freundlich equations were used to analyze the adsorption equilibrium. Maximum removal efficiency of 86 % was obtained with 25 mg?L?1 of initial phenol concentration. The favorable pH for maximum phenol adsorption was 4.0. Freundlich equation represented the adsorption equilibrium data more ideally than the Langmuir. The maximum adsorption capacity obtained was 78.32 mg?g?1 at a temperature of 30 °C and 25 mg?L?1 initial phenol concentration. The adsorption was spontaneous and endothermic. The pseudo-second-order model, an indication of chemisorption mechanism, fitted the experimental data better than the pseudo-first-order Lagergren model. Regeneration of spent activated carbon was carried out using Pseudomonas putida MTCC 2252 as the phenol-degrading microorganism. Maximum regeneration up to 57.5 % was recorded, when loaded phenol concentration was 25 mg?L?1. The data obtained in this study would be useful in designing and fabricating an efficient treatment plant for phenol-rich effluents.  相似文献   

8.

Introduction

The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system.

Methods

Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms.

Results

Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m2 g?1. From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g?1 for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (?G°, ?H° and ?S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J?mol?1 K?1, and those of enthalpy ranged from 16.31 to 30.77 kJ mol?1. The equilibrium parameter (R L) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study.

Conclusion

The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems.  相似文献   

9.
2,4-Dichlorophenol (2,4-DCP) is widely distributed in wastewaters discharged from several industries, and it is considered as a priority pollutant due to its high toxicity. In this study, the use of different peroxidase extracts for 2,4-DCP removal from aqueous solutions was investigated. Tobacco hairy roots (HRs), wild-type (WT), and double-transgenic (DT) for tomato basic peroxidases (TPX1 and TPX2) were used to obtain different peroxidase extracts: total peroxidases (TPx), soluble peroxidases (SPx), and peroxidases ionically bound to the cell wall (IBPx). All extracts derived from DT HRs exhibited higher peroxidase activity than those obtained from WT HRs. TPx and IBPx DT extracts showed the highest catalytic efficiency values. The optimal conditions for 2,4-DCP oxidation were pH 6.5, H2O2 0.5 mM, and 200 U mL?1 of enzyme, for all extracts analyzed. Although both TPx extracts were able to oxidize different 2,4-DCP concentrations, the removal efficiency was higher for TPx DT. Polyethylene glycol addition slightly improved 2,4-DCP removal efficiency, and it showed some protective effect on TPx WT after 2,4-DCP oxidation. In addition, using Lactuca sativa test, a reduction of the toxicity of post removal solutions was observed, for both TPx extracts. The results demonstrate that TPx extracts from both tobacco HRs appear to be promising candidate for future applications in removing 2,4-DCP from wastewaters. This is particularly true considering that these peroxidase sources are associated with low costs and are readily available. However, TPx DT has increased peroxidase activity, catalytic efficiency, and higher removal efficiency than TPx WT, probably due to the expression of TPX1 and TPX2 isoenzymes.  相似文献   

10.
In this study, the removal of Cr(III) and Cu(II) from contaminated wastewaters by rice husk, as an organic solid waste, was investigated. Experiments were performed to investigate the influence of wastewater initial concentration, pH of solution, and contact time on the efficiency of Cr(III) and Cu(II) removal. The results indicated that the maximum removal of Cr(III) and Cu(II) occurred at pH 5–6 by rice husk and removal rate increased by increased pH from 1 to 6. It could be concluded that the removal efficiency was enhanced by increasing wastewater initial concentration in the first percentage of adsorption and then decreased due to saturation of rice husk particles. Also according to achieved results, calculated saturation capacity in per gram rice husk for Cr(III) and Cu(II) were 30 and 22.5 mg?g?1, respectively. The amounts of Cr(III) and Cu(II) adsorbed increased with increase in their contact time. The rate of reaction was fast. So that 15–20 min after the start of the reaction, between 50 and 60 % of metal ions were removed. Finally, contact time of 60 min as the optimum contact time was proposed.  相似文献   

11.
This research involved the use of response surface methodology (RSM) to investigate the adsorption of Disperse Red 167 dye onto the bamboo-based activated carbon activated with H3PO4 (PBAC) in a batch process. F400, a commercially available activated carbon, was used in parallel for comparison. Analysis of variance showed that input variables such as the contact time, temperature, adsorbent dosage and the interaction between the temperature and the contact time had a significant effect on the dye removal for both adsorbents. RSM results show that the optimal contact time, temperature, initial dye concentration and adsorbent dosage for both adsorbents were found to be 15.4 h, 50 °C, 50.0 mg L?1 and 12.0 g L?1, respectively. Under these optimal conditions, the removal efficiencies reached 90.23 % and 92.13 % for PBAC and F400, respectively, with a desirability of 0.937. The validation of the experimental results confirmed the prediction of the models derived from RSM. The adsorption followed a nonlinear pseudo-first-order model and agreed well with the Freundlich and Temkin isotherm as judged by the levels of the AICc and the Akaike weight. Furthermore, the thermodynamics analysis indicated that, for both adsorbents, the adsorption was a physical process that was spontaneous, entropy-increasing and endothermic.  相似文献   

12.

In this study, a novel thermo-responsive polymer was synthesized with efficient grafting of N-isopropylacrylamide as a thermosensitive polymer onto the graphene oxide surface for the efficient removal of phenol and 2,4-dichlorophenol from aqueous solutions. The synthesized polymer was conjugated with 2-allylphenol. Phenol and 2,4-dichlorophenol were monitored by ultra-performance liquid chromatography system equipped with a photodiode array detector. The nanoadsorbent was characterized by different techniques. The nanoadsorbent revealed high adsorption capacity where the removal percentages of 91 and 99% were found under optimal conditions for phenol and 2,4-dichlorophenol, respectively (for phenol; adsorbent dosage = 0.005 g, pH = 8, temperature= 25 °C, contact time = 60 min; for 2,4-dichlorophenol; adsorbent dosage = 0.005 g, pH = 5, temperature = 25 °C, contact time = 10 min). Adsorption of phenol and 2,4-dichlorophenol onto nanoadsorbent followed pseudo-second-order kinetic and Langmuir isotherm models, respectively. The values of ΔG (average value = ? 11.39 kJ mol?1 for phenol and 13.42 kJ mol?1 for 2,4-dichlorophenol), ΔH (? 431.72 J mol?1 for phenol and ? 15,721.8 J mol?1 for 2,4-dichlorophenol), and ΔS (35.39 J mol?1 K?1 for phenol and ? 7.40 J mol?1 K?1 for 2,4-dichlorophenol) confirmed spontaneous and exothermic adsorption. The reusability study indicated that the adsorbent can be reused in the wastewater treatment application. Thermosensitive nanoadsorbent could be used as a low-cost and efficient sorbent for phenol and 2,4-dichlorophenol removal from wastewater samples.

  相似文献   

13.
A batch adsorption process was applied to investigate the removal of perchlorate (ClO4 ?) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO4 ? removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO4 ?. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable.  相似文献   

14.
Activated natural siderite (ANS) was used to investigate its characteristics and mechanisms of As(V) adsorption from aqueous solution. Batch tests were carried out to determine effects of contact time, initial As(V) concentration, temperature, pH, background electrolyte, and coexisting anions on As(V) adsorption. Arsenic(V) adsorption on ANS well-fitted pseudo-second-order kinetics. ANS showed a high-adsorption capacity of 2.19 mg/g estimated from Langmuir isotherm at 25 °C. Thermodynamic studies indicated that As(V) adsorption on ANS was spontaneous, favorable, and endothermic. ANS adsorbed As(V) efficiently in a relatively wide pH range between 2.0 and 10.0, although the removal efficiency was slightly higher in acidic conditions than that in basic conditions. Effects of background electrolyte and coexisting anions were not significant within the concentration ranges observed in high As groundwater. Results of XRD and Fe K-edge XANES analysis suggested ANS acted as an Fe(II)/(III) hybrid system, which was quite effective in adsorbing As from aqueous solution. There was no As redox transformation during adsorption, although Fe(II) oxidation occurred in the system. Two infrared bands at 787 and 872 cm?1 after As(V) adsorption suggested that As(V) should be predominantly adsorbed on ANS via inner-sphere bidendate binuclear surface complexes.  相似文献   

15.
Nanocomposite hydrogels based on poly(methacrylamide-co-acrylic acid) and nano-sized montmorillonite were prepared by aqueous dispersion and in situ radical polymerization. Optimum sorption conditions were determined as a function of montmorillonite content, contact time, pH, and temperature. The equilibrium data of Cu2+ and Ni2+ conformed to the Freundlich and Langmuir isotherms in terms of relatively high regression values. The maximum monolayer adsorption capacity of the nanocomposite hydrogel (with 3 wt% montmorillonite content), as obtained from the Langmuir adsorption isotherm, was found to be 49.26 and 46.94 mg g?1 for Cu2+ and Ni2+, respectively, at contact time?=?60 min, pH?=?6.8, adsorbent dose?=?100 mg/ml, and temperature?=?318 K. Kinetic studies of single system indicated that the pseudo-second order is the best fit with a high correlation coefficient (R 2?=?0.97–0.99). The result of five times sequential adsorption–desorption cycle shows a good degree of desorption and a high adsorption efficiency.  相似文献   

16.
A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5–10-nm outer diameter, surface area of 40–600 m2/g, and purity above 95 % was used as an adsorbent. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. Manganese-adsorbed MWCNT was characterized by Raman, FTIR, X-ray diffraction, XPS, SEM, and TEM. The adsorption efficiency could reach 96.82 %, suggesting that MWCNT is an excellent adsorbent for manganese removal from water. The results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of manganese. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic process. The experimental results showed that MWCNT is an excellent manganese adsorbent. The MWCNTs removed the manganese present in the water and reduced it to a permissible level making it drinkable.  相似文献   

17.
In the present study, the photocatalytic degradation of Reactive Red 195 (RR195) from aqueous samples under UV-A irradiation by using anatase/brookite TiO2 (A/B TiO2) mesoporous nanoparticles has been investigated. Batch experiments were conducted to study the effects of the main parameters affecting the photocatalytic process. The effects and interactions of most influenced parameters, such as substrate concentration and catalyst load, were evaluated and optimized by using a central composite design model and a response surface methodology. The results indicated that the dye degradation efficiency in the experimental domain investigated was mainly affected by the tested variables, as well as their interaction effects. Analysis of variance showed a high coefficient of determination value (R 2?=?0.9947), thus ensuring a satisfactory adjustment of the first-order regression model (2FI model) with the experimental data. The obtained results also indicate that catalyst loading plays an important role in determining the removal efficiency of RR195 attributable to both photodegradation and adsorption process. Under optimal conditions (initial dye concentration (50 mg/L) and catalyst loading (2,000 mg/L), A/B TiO2 showed similar removal efficiency compared to that of commercial titania (Degussa P25). Also, at these conditions, complete degradation of RR195 can be achieved by both catalysts within 15 min under UV-A irradiation. The experiments demonstrated that dye removal on the prepared A/B TiO2 was facilitated by the synergistic effects between adsorption and photocatalysis. Photocatalytic mineralization of RR195 was monitored by total organic carbon. The recycling experiments confirmed the stability of the catalyst.  相似文献   

18.
Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m?3 day?1, for 2,4-D, and 12.8 to 59.3 g m?3 day?1 for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56?±?0.44; picloram, 94.58?±?2.62; and chemical oxygen demand (COD), 89.42?±?3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day?1, corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.  相似文献   

19.
Arsenic contamination of groundwater is a major threat to human beings globally. Among various methods available for arsenic removal, adsorption is fast, inexpensive, selective, accurate, reproducible and eco-friendly in nature. The present paper describes removal of arsenate from water on zirconium oxide-coated sand (novel adsorbent). In the present work, zirconium oxide-coated sand was prepared and characterised by infrared and X-ray diffraction techniques. Batch experiments were performed to optimise different adsorption parameters such as initial arsenate concentration (100–1,000 μg/L), dose (1–8 g/L), pH of the solution (2–14), contact time (15–150 min.), and temperature (20, 30, 35 and 40 °C). The experimental data were analysed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Furthermore, thermodynamic and kinetic parameters were evaluated to know the mode of adsorption between ZrOCMS and As(V). The maximum removal of arsenic, 97 %, was achieved at initial arsenic concentration of 200 μg/L, after 75 min at dosage of 5.0 g/L, pH?7.0 and 27?±?2 °C. For 600 μg/L concentration, the maximum Langmuir monolayer adsorption capacity was found to be 270 μg/g at 35 °C. Kinetic modelling data indicated that adsorption process followed pseudo-second-order kinetics. The mechanism is controlled by liquid film diffusion model. Thermodynamic parameter, ΔH°, was ?57.782, while the values of ΔG° were ?9.460, ?12.183, ?13.343 and ?13.905 kJ/mol at 20, 30, 35 and 40 °C, respectively, suggesting exothermic and spontaneous nature of the process. The change in entropy, ΔS°?=??0.23 kJ/mol indicated that the entropy decreased due to adsorption of arsenate ion onto the solid adsorbent. The results indicated that the reported zirconium oxide-coated marine sand (ZrOCMS) was good adsorbent with 97 % removal capacity at 200 μg/L concentration. It is interesting to note that the permissible limit of arsenic as per World Health Organization is 10 μg/L, and in real situation, this low concentration can be achieved through this adsorbent. Besides, the adsorption capacity showed that this adsorbent may be used for the removal of arsenic from any natural water resource.  相似文献   

20.
Sewage sludge (SS) with corn stalk (CS) was used to prepare SS-based activated carbon (SAC) by pyrolysis with ZnCl2. The effects of mixing ratio on surface area and pore size distribution, elemental composition, surface chemistry, and morphology were investigated. The results demonstrated that the addition of CS into SS samples improved the surface area (from 92 to 902 m2/g) and the microporosity (from 1.2 to 4.1 %) of the adsorbents and, therefore, enhancing the adsorption performance. The removal of leachate chemical oxygen demand (COD) was also determined. It was found that the COD removal rate reached 85 % at pH 4 with the SAC (90 wt% CS) dosage of 2 % (g/mL) and an adsorption time of 40 min. The adsorption experimental data were fitted by both Langmuir and Freundlich adsorption isotherms. Long-chain alkanes and refractory organics were found in raw leachate, but could be removed by SAC largely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号