首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Remediation of contaminated soil by a solvent/surfactant system   总被引:13,自引:0,他引:13  
Chu W  Kwan CY 《Chemosphere》2003,53(1):9-15
This study investigates a new approach using a solvent/surfactant-aided soil-washing process to improve the performance of conventional surfactant-aided soil remediation. Three surfactants (Brij 35, Tween 80, and SDS) and three organic solvents (acetone, triethylamine, and squalane) were used to evaluate the desorption performances of 4,4'-dichlorobiphenyl (DCB) out of three soils with different sorption characteristics. The performance improvement is likely due to better dissolution of the hydrophobic contaminants from the soil assisted by the solvent, and the formation of solvent-incorporated surfactant micelles, which increases both the size (i.e. capacity) and affinity of micelles for more effective contaminant extraction. The foc of soils were found to be important in determining the performance of a solvent/surfactant-aided soil-washing process. Judging from the experimental data and as verified by the two constants in the proposed soil-washing model, as the organic solvent is coexisting with the surfactant micelles, both the marginal soil-washing performance (right after the use of a very small amount of solvent compared to that of none) and the final soil-washing capacity are increased compared to those of a pure surfactant-aided washing process.  相似文献   

2.
比较研究了蓖麻油硫酸盐(SCOS)与普通表面活性剂Triton X-100(TX100)、Tween 80(TW80)、Brij35、十二烷基苯磺酸钠(SDBS)和十二烷基硫酸钠(SDS)等对菲的增溶和洗脱作用.结果表明,菲表观溶解度与SCOS的浓度呈单一线性关系,SCOS微乳液对菲的增溶比SR=0.0314为最大,菲在微乳相和水相之间的分配系数logKem=4.44,大于菲在胶束相和水相之间的分配系数(logKmc).1:10土-水体系下,SCOS微乳液对菲污染土壤的清洗速率最快,清洗效率最高.SCOS有望成为土壤有机污染淋洗修复的增效试剂.  相似文献   

3.
Zhao B  Zhu L  Li W  Chen B 《Chemosphere》2005,58(1):33-40
The effects of mixed anionic-nonionic surfactants, sodium dodecyl sulfate (SDS) mixed with Tween80 (TW80), Triton X-100 (TX100) and Brij35 respectively on the solubility enhancement and biodegradation of phenanthrene in the aqueous phase were investigated. The efficiency of solubilization and biodegradation of phenanthrene in single-, and mixed-surfactant solutions were also compared. The critical micellar concentrations (CMCs) of mixed surfactants were sharply lower than that of sole SDS. The degree of solubility enhancements by the mixed surfactants followed the order of SDS-TW80>SDS-Brij35>SDS-TX100. Synergistic solubilization was observed in the mixed surfactant solutions, in which the molar ratios of SDS to nonionic surfactant were 1:0, 9:1, 7:3, 5:5, 3:7, 1:9 and 0:1 while the total concentration of surfactants was kept at 5.0 and 10.0 mM, respectively. SDS-Brij35 exhibited more significant degree of synergistic solubility enhancement for phenanthrene. The mixed surfactants exhibited no inhibitory effect on biodegradation of phenanthrene. Substantial amounts of the solubilized phenanthrene by mixed surfactants were completely degraded by phenanthrene-degrading microorganisms within 96 h. The results suggested that anionic-nonionic surfactants would improve the performance of remediation of PAH-contaminated soils.  相似文献   

4.
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.  相似文献   

5.
Soil washing is a potential technology for rapid removal of organic hydrocarbons sorbed to soils. In this work, p-cresol desorption with different non-ionic surfactants (Tween 80, Brij 30 and Triton X-100) was compared to cyclodextrine and citrate as solubilizer. A series of batch extraction experiments were conducted at 20 °C using the field soil with different extracting solutions at various concentrations to investigate the removal efficiency and to optimize the concentration of the extractant. The use of the different extracting agents was very selective to p-cresol extraction, minimizing soil organic matter releasing and maintaining the natural pH of the soil. The highest asymptotic values of desorption percentages were obtained for Tween 80 and Brij 30 at 48 h. However, Brij 30 ecotoxicity (EC50 = 0.5 mg L−1) is in the same order of that obtained for p-cresol, being this surfactant clearly ruled out. Liquid to solid ratio of 2.5 mL g−1 presented the best extraction results, while concentrations higher than 1 g L−1 for Tween 80 and Citrate did not produce any significant effect on the desorption efficiency. p-Cresol extraction efficiencies higher than 70% and 60% for Tween 80 and Citrate, respectively.  相似文献   

6.
We have conducted well-controlled DNAPL remediation experiments within a 2-D, glass-walled, sand-filled chamber using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Initial conditions for each remediation experiment were created by injecting DNAPL as a point source at the top of the chamber and allowing the DNAPL to migrate downward through a water-filled, heterogeneous, sand-pack designed to be evocative of a fluvial depositional environment. This migration process resulted in the DNAPL residing as a series of descending pools. Lateral advection across the chamber was used to introduce the remedial fluids. Photographs and digital image analysis illustrate interactions between the introduced fluids and the DNAPL. In the surfactant experiments, we found that DNAPL configured in a series of pools was easily mobilized. Extreme reductions in DNAPL/water interfacial tension occurred when using the Aerosol MA surfactant, resulting in mobilization into low permeability regions and thus confounding the remediation process. More modest reductions in interfacial tension occurred when using the Tween 80 surfactant resulting in modest mobilization. In this experiment, capillary forces remained sufficient to exclude DNAPL migration into low permeability regions allowing the excellent solubilizing properties of the surfactant to recover almost 90% of the DNAPL within 8.6 pore volumes. Injection of a potassium permanganate solution resulted in precipitation of MnO2, a reaction product, creating a low-permeability rind surrounding the DNAPL pools. Formation of this rind hindered contact between the permanganate and the DNAPL, limiting the effectiveness of the remediation. From these experiments, we see the value of performing visualization experiments to evaluate the performance of proposed techniques for DNAPL remediation.  相似文献   

7.
One of the main limitations for a wider application of surfactants in soil remediation is the lack of knowledge about environmental fate and toxicity of surfactant itself especially for in situ application. Sorption behaviour, biodegradability, toxicity of parent compound and its metabolites are important processes that affect environmental fate of surfactants in site remediation applications. Tween 80 (poly(oxyethylene)(20)-sorbitane monooleate) and Aerosol MA+80 (dihexyl sodium sulfosuccinate) are surfactants that have been tested in laboratory and field scale remediation of soil and groundwater. In this work, the sorption and biodegradability of these surfactants were assessed to provide conditions and limitations for their use. The soil used in this experimentation was analysed for organic carbon content, soil bacteria, and size fraction and resulted to be a good model because is characterised by mean values for almost all considered parameters. Tween 80 showed high degree of biodegradability but a high affinity for soil matrix. Results suggest that Tween 80 could find its best application in ex situ solid phase remediation like ex situ bioremediation; its high affinity to soil could limit in situ applications. Biodegradation tests for Aerosol MA+80 show low degree of biodegradability and mineralisation. Biodegradation experiments, coupled with analysis of toxicity, could support the hypothesis that degradation of Aerosol MA+80 is not complete and leads to an accumulation of intermediates with at least the same toxicity of the parental compound. Therefore, aquifer remediation application with Aerosol MA+80 has to be conducted with necessary precautions to avoid product loss and excess surfactant should be flushed from the soil.  相似文献   

8.

Electrokinetic (EK) remediation technology can enhance the migration of reagents to soil and is especially suitable for in situ remediation of low permeability contaminated soil. Due to the long aging time and strong hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) from historically polluted soil, some enhanced reagents (oxidant, activator, and surfactant) were used to increase the mobility of PAHs, and remove and degrade PAHs in soil. However, under the electrical field, there are few reports on the roles and combined effect of oxidant, activator, and surfactant for remediation of PAHs historically contaminated soil. In the present study, sodium persulfate (PS, oxidant, 100 g L?1) or/and Tween 80 (TW80, surfactant, 50 g L?1) were added to the anolyte, and citric acid chelated iron(II) (CA-Fe(II), activator, 0.10 mol L?1) was added to catholyte to explore the roles and contribution of enhanced reagents and combined effect on PAHs removal in soil. A constant voltage of 20 V was applied and the total experiment duration was 10 days. The results showed that the removal rate of PAHs in each treatment was PS + CA-Fe(II) (21.3%) > PS + TW80 + CA-Fe(II) (19.9%) > PS (17.4%) > PS + TW80 (11.4%) > TW80 (8.1%) > CK (7.5%). The combination of PS and CA-Fe(II) had the highest removal efficiency of PAHs, and CA-Fe(II) in the catholyte could be transported toward anode via electromigration. The addition of TW80 reduced the electroosmotic flow and inhibited the transport of PS from anolyte to the soil, which decreased the removal of PAHs (from 17.4 to 11.4% with PS, from 21.3 to 19.9% with PS+CA-Fe(II)). The calculation of contribution rates showed that PS was the strongest enhancer (3.3~9.9%), followed by CA-Fe(II) (3.9~8.5%) (with PS), and the contribution of TW80 was small and even negative (?1.4~0.6%). The above results indicated that the combined application of oxidant and activator was conducive to the removal of PAHs, while the addition of surfactant reduced the EOF and the migration of oxidant and further reduced the PAHs removal efficiency. The present study will help to further understand the role of enhanced reagents (especially surfactant) during enhanced EK remediation of PAHs historically contaminated soil.

  相似文献   

9.
表面活性剂淋滤对土壤中邻苯二甲酸酯纵向迁移的影响   总被引:1,自引:0,他引:1  
以无表面活性剂的去离子水为对照、设置1倍(1 CMC)和2倍临界胶束浓度(2 CMC)浓度,研究了单一和混合表面活性剂,包括十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX-100)对人工污染土壤中邻苯二甲酸酯(PAEs)纵向迁移的影响,土柱中上层为PAEs污染土(3 cm),下层为清洁土(20 cm)。CTAB和SDBS在2 CMC时、TX-100为1 CMC时可增强污染土中PAEs的纵向迁移,其中DMP和DEP有无表面活性剂均可发生迁移,在相同表面活性剂条件下,延长老化时间对污染土中PAEs的迁移产生一定的影响。CTAB和SDBS在2 CMC时,清洁土中PAEs总含量较低,但TX-100在1 CMC时较低。清洁土中PAEs总含量均随土层深度的增加而降低。当老化时间较短时,土壤有机质对PAEs在清洁土柱的迁移影响较小,老化时间的延长对清洁土中的PAEs迁移影响较大。3种表面活性剂均可有效促进清洁土中DMP和DEP的迁移,CTAB和SDBS在2 CMC、TX-100在1 CMC时可促进DNBP和BBP的迁移,但3种表面活性剂对清洁土中DNOP迁移的影响较小。与单一表面活性剂相比,混合表面活性剂有助于污染土中PAEs的迁移,且随着浓度的升高,清洁土中PAEs的含量呈现降低的趋势。就整个土柱而言,单一表面活性剂CTAB和SDBS在较高浓度时、TX-100较低的浓度时对PAEs的淋滤效果更好;在较短老化时间下,土壤有机质含量的高低对淋滤率没有显著影响;老化时间延长有效降低了淋滤率;而混合表面活性剂的淋滤率有明显提高,更有助于PAEs的迁移。  相似文献   

10.
Zhao B  Zhu L  Yang K 《Chemosphere》2006,62(5):772-779
Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.  相似文献   

11.
This study evaluated the effects of two surfactants (i.e., Tween 80 and SDS) on biodegradation of crude oil by mixed bacterial consortium in soil-aqueous system. The mixed bacterial consortium was domesticated from the activated sludge of cooking plant through a progressive domestication process. High-throughput sequencing analysis revealed that Rhodanobacter sp. was the dominant bacteria. The higher CMCeff value for two surfactants was observed in soil-aqueous system compared with that in aqueous system, which was likely due to their adsorption onto soil particles. Either Tween 80 or SDS can be utilized as carbon source and promote the growth of mixed bacterial consortium. Further findings evidenced that the degradation of crude oil can be enhanced by adding either Tween 80 or SDS. The performance of Tween 80 was generally superior to SDS for the crude oil degradation. The highest crude oil degradation efficiency was 42.2 and 31.0% under the conditions of 5 CMCeff of Tween 80 and 2 CMCeff of SDS, respectively. Furthermore, the degradation efficiency of crude oil in remediation experiment (i.e., 77%) evidenced that the integration of adding Tween 80 and inoculating mixed bacterial consortium was effective for crude oil-contaminated soil decontamination.  相似文献   

12.
Rao P  He M 《Chemosphere》2006,63(7):1214-1221
Adsorption of anionic surfactant (sodium dodecylbenzenesulfonate, SDBS) and nonionic surfactant (an alcohol ethoxylates with 12 carbons and 9 oxyethyl groups, A12E9) mixtures, widely used as the major constituents of synthetic detergents in China and become the most common pollutants in the environment, on soils was conducted to investigate the behavior of mixed surfactants in soils. The effects of addition order and mixing ratios of two surfactants, associated with pH and ion strength in solutions, on adsorptions were considered. The results show that saturated adsorption amount of SDBS and A12E9 on soils decreased respectively when A12E9 was added into soils firstly compared with that secondly, possibly resulting from the screening of A12E9 to part adsorption sites on soils and the hydrocarbon chain-chain interactions between SDBS and A12E9. The adsorption of SDBS and A12E9 on soils was enhanced each other at pre-plateau region of isotherms. At plateau region of isotherms, the adsorption of SDBS on soils decreased with the increase of molar fraction of A12E9 in mixed surfactant solutions, while that of A12E9 increased except the molar ratio of SDBS to A12E9 0.0:1.0. With the increase of pH in mixed surfactant solutions, adsorption amount of SDBS and A12E9 on soils decreased, respectively. The reduction of ion strength in soils resulted in the decrease of adsorption amount of SDBS and A12E9 on soils, respectively.  相似文献   

13.
The potential of five nonionic surfactants, Triton X-100, Brij35, Ethylan GE08, Ethylan CD127, and Ethylan CPG660 for enhancing release of carbaryl and ethion from two long-term contaminated soils was evaluated using the batch method. Incorporation of the surfactants into soils enhanced the release of both pesticides to various extents, which could be related to the type of pesticides and type and the amount of surfactants added. Release of ethion was dramatically enhanced by aqueous concentrations of surfactants above their critical micelle concentration values. This was attributed to solubility enhancement through incorporation of the highly hydrophobic compound within surfactant micelles. A concentration of 10 g L(-1) of various surfactants released >70% of the total ethion from the soil irrespective of the surfactant. For carbaryl, the surfactants were effective at low concentrations and dependence on concentration was lower than in the case of ethion. The ethylan surfactants (GE08, CD127, and CPG660) had a higher potential than Triton X-100 and Brij35 for releasing the pesticides. However, there was still a significant portion of carbaryl (11% of the total) and ethion (17% of the total) left in the soil. Our study also showed that there must be an optimal concentration of each surfactant to maximize the mass transfer of pesticides. At some threshold concentration level, additional surfactant started to inhibit the mass transfer of solute from the soil into the water. The results suggested that surfactants could help remediation of soils polluted by pesticides. The choice of surfactant should be made based on the properties of pesticides.  相似文献   

14.
Sorption onto five saturated soils of the homologs within the commercial surfactant mixture Brij 35 (registered trademark of ICI Americas) was investigated. Brij 35 is a mixture of linear ethoxylated alcohols, having an average of 23 ethoxy (EO) groups per molecule and alcohol chain of primarily 12 carbons in length (C12H25(OCH2CH2)23OH). In experiments, saturated soils were exposed to various concentrations of the surfactant mixture for specified times, the slurries were centrifuged to separate the phases, the aqueous phases were extracted with 1,2-dichloroethane, and the residual homologs were derivatized with 3,5-dinitrobenzoyl chloride and analyzed by normal phase HPLC. Homologs containing 4–43 EO groups were chromatographically separated at near baseline. At aqueous Brij 35 concentrations below the critical micelle concentration (cmc), the proportion of each homolog sorbed to each of the soils increased with increasing EO chain length through the homologous series. As a result, in experiments where a significant proportion of the surfactant adsorbed, significant shifts in the aqueous phase compositions occurred to mixtures with lower mean EO numbers. A sharp break in the adsorption isotherms occurs at the cmc.  相似文献   

15.
The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (Kss) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. The objective of this study was to evaluate the capacity of decontamination of polluted soils with PAHs using the sequence extraction-electrochemical treatment: extraction of PAHs from the soil with surfactant followed by electrochemical degradation of the liquid collected. Several PAHs (anthracene, benzo[a]pyrene, and phenanthrene) have been used as model compounds since such PAHs are found in high concentrations in contaminated environmental samples. Due to their hydrophobic nature, soil extraction has been limited. In this work, the use of six surfactants, Brij 35, Merpol, Tergitol, Tween 20, Tween 80 and Tyloxapol, has been evaluated on the PAH extraction from a model soil such as kaolin. Furthermore, the electrochemical degradation of PAHs with the surfactant that gave the best result was investigated working with neat solutions. The electrochemical treatment of these solutions was carried out in two electrochemical cells with different working volumes, 0.4 and 1.5l, and electrode material (graphite or titanium). Near complete degradation was reached for all the experiments in both cells.  相似文献   

17.
Cheng KY  Wong JW 《Chemosphere》2006,62(11):1907-1916
Batch experiments were performed to examine the desorption behavior of phenanthrene and pyrene in soil–water system in the presence of nonionic surfactant Tween 80 and dissolved organic matter (DOM) derived from pig manure or pig manure compost. Addition of 150 mg l−1 Tween 80 desorbed 5.8% and 2.1% of phenanthrene and pyrene from soil into aqueous phase, respectively, while the addition of both Tween 80 and DOM derived from pig manure compost and pig manure could further enhance the desorption of phenanthrene to 15.8% and 16.2%, respectively, and 6.4% and 10.9%, respectively, for pyrene. In addition, our finding also suggested that subsequent addition of Tween 80 into the soil–water system could further enhance PAHs desorption. The enhancement effect of the co-existence of Tween 80 and DOM was more than the additive effect of the Tween 80 and DOM individually. It is likely that the formation of DOM–surfactant complex in the soil–water system may be a possible reason to explain such desorption enhancement phenomenon. Therefore, it is anticipated that the coexistence of both Tween 80 and DOM derived from pig manure or pig manure compost in soil environment will enhance the bioavailability of PAHs as well as other hydrophobic organic contaminants (HOCs) by enhancing the desorption during remediation process.  相似文献   

18.
Effect of surfactants on desorption of aldicarb from spiked soil   总被引:2,自引:0,他引:2  
Xu J  Yuan X  Dai S 《Chemosphere》2006,62(10):1630-1635
Surfactant enhanced desorption of aldicarb from spiked soil was investigated in this paper. Anionic (sodium dodecyl benzene sulphonate, SDBS), cationic (hexadecyl trimethyl ammonium bromide, HTAB) and nonionic (octyl polyethylene glycol phenyl ether, OP) surfactants were tested to determine their optimal desorption conditions including desorption time, mixing speed and surfactant concentrations. The results showed that the optimal operating conditions were obtained at 2 h, 150 rpm, and surfactants concentrations were 1000, 100, and 200 mg l(-1) for SDBS, OP, and HTAB, respectively. The paper also investigated the desorption efficiency of mixture of different kinds of surfactants for aldicarb-spiked soil, and found that anionic-nonionic surfactant mixtures gave the best desorption efficiency up to 77%, while anionic-cationic surfactant mixture gave a poor desorption efficiency similar to water, suggesting that mixture of anionic-nonionic surfactants were highly promising on remediation of aldicarb-contaminated soil.  相似文献   

19.
A variety of column experiments have been completed for the purpose of selecting and evaluating suitable surfactants for remediation of nonaqueous phase liquids (NAPLs). The various NAPLs tested in the laboratory experiments were tetrachloroethylene (PCE), trichloroethylene (TCE), jet fuel (JP4) and a dense nonaqueous phase liquid from a site at Hill Air Force Base, UT. Both Ottawa sand and Hill field soil were used in these experiments. Surfactant candidates were first screened using phase behavior experiments and only the best ones were selected for the subsequent column experiments. Surfactants which showed high contaminant solubilization, fast coalescence times, and the absence of liquid crystal phases and gels during the phase behavior experiments were tested in soil column experiments. The primary objective of the soil column experiments was to identify surfactants that recovered at least 99% of the contaminant. The secondary objective was to identify surfactants that show low adsorption and little or no loss of hydraulic conductivity during the column experiments. Results demonstrated that up to 99.9% of the contaminants were removed as a result of surfactant flooding of the soil columns. The addition of xanthan gum polymer to the surfactant solution was shown to increase remediation efficiency as a lower volume of surfactant was required for recovering a given volume of NAPL. Based on these experimental results, guidelines for designing highly efficient and robust surfactant floods have been developed and applied to a field demonstration.  相似文献   

20.
In the present work changes in the adsorption of the pesticide chlorpyrifos-methyl (CLP-m) on soil colloids induced by application of surfactants were determined using a batch equilibrium method. The surfactants used were sodium dodecyl sulphate (SDS), Tween 20, and dihexadecyldimethylammonium bromide (DHAB). The adsorption isotherms of CLP-m in aqueous medium and in surfactant solutions at concentration equal to the critical micelle concentration (CMC) fitted the Freunlich adsorption equation generally with R2 values greater than 0.96. While the addition of SDS and DHAB decreased the pesticide adsorption, the addition of Tween 20 increased the pesticide adsorption. The increases or decreases in the adsorption in the experiment revealed that the behavior of CLP-m in soil water-systems mainly depends on the type of surfactant. Moreover water solubility of CLP-m changes by the three surfactants below and above their CMC were studied. While the solubility of CLP-m was enhanced by SDS both below and above the CMC, the solubility of the pesticide was enhanced by DHAB only above the CMC. Tween 20 did not influence the solubility of CLP-m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号